

Tutorial VPLS

GTER-16

Igor Giangrossi igor@riverstonenet.com

Agenda

- Overview
- IETF Status
- Review: Martini draft
- LDP and BGP signaling approaches
- Operation: Control Plane
- Operation: Data Plane
- Scaling VPLS: HVPLS
- Comparison: VPLS and RFC2547
- References

Agenda

- Overview
- IETF Status
- Review: Martini draft
- LDP and BGP signaling approaches
- Operation: Control Plane
- Operation: Data Plane
- Scaling VPLS: HVPLS
- Comparison: VPLS and RFC2547
- References

Technology Trends

- IP is the dominant technology;
- Ethernet
 - Dominant in LANs
 - New access technology for MANs
 - New backbone technology for MANs
- MPLS as a necessary tool
 - Traffic Engineering
 - VPNs

Traditional VPNs

L2 VPNs:

- Leased Lines
- ATM
- Frame Relay
- L2TP

L3 VPNs:

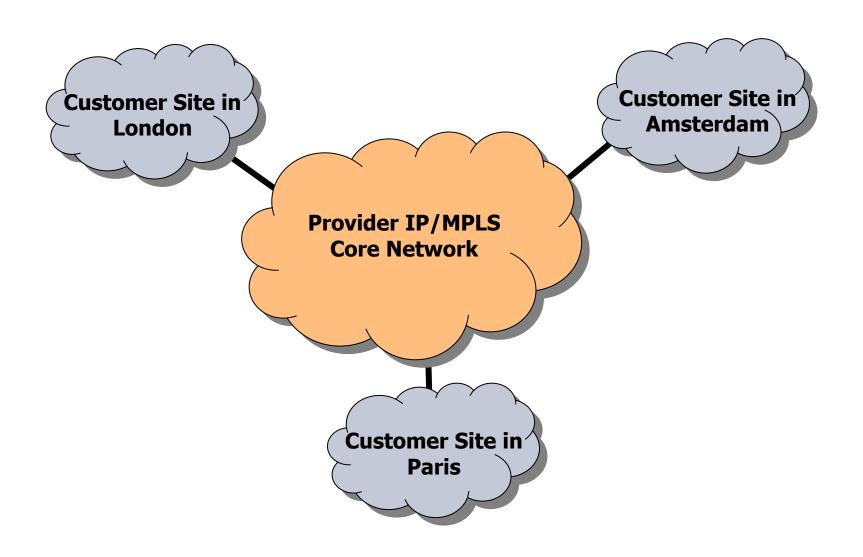
- IPSec
- GRE
- PPTP

Ethernet VPNs

- Native Ethernet protocols (802.1) insufficient for MANs:
 - STP/RSTP/PVST/MSTP;
 - GARP/GVRP;
 - 802.1Q VLANs;
- The IEEE is working on some improvements:
 - Provider Bridges (802.1ad)
- Ethernet alone lacks OAM, traceability, resiliency facilities

Ethernet / IP and MPLS

- MPLS brings additional features to Ethernet / IP:
 - IP Infrastructure relies on Routing Protocols for resiliency;
 - Connection-oriented tunnels
 - Traffic Engineering tools
 - VPNs
 - Improved and unified scheme for QoS
 - Core equipments don't maintain VPN information
- Solution: use MPLS for Ethernet VPNs!



MPLS VPNs

- L3 VPNs:
 - RFC2547: BGP/MPLS VPNs
 - IP Traffic only
- L2 VPNs:
 - Point-to-Point: Martini tunnels
 - Generic L2 point-to-point technology
 - Multipoint: VPLS
 - Specific for Ethernet
- More details to come...

Virtual Private LAN Services MPLS Multipoint Service

Virtual Private LAN Services MPLS Multipoint Service

Agenda

- Overview
- IETF Status
- Review: Martini draft
- LDP and BGP signaling approaches
- Operation: Control Plane
- Operation: Data Plane
- Scaling VPLS: HVPLS
- Comparison: VPLS and RFC2547
- References

Point to Point Drafts

- The Martini draft is now part of a Working Group – PWE3
 - draft-ietf-pwe3-ethernet-encap-04.txt
 - draft-ietf-pwe3-control-protocol-04.txt
- There are other drafts for the transport of other technologies over MPLS
- The Ethernet draft is very close to become an RFC

Multipoint Drafts

- Two solutions were chosen by the L2VPN Working Group:
 - draft-ietf-l2vpn-vpls-ldp-01.txt
 - Former Lasserre-vKompella draft
 - draft-ietf-l2vpn-vpls-bgp-00.txt
 - Former Kompella draft

draft-ietf-l2vpn-vpls-ldp-01.txt

- Uses LDP for signaling the VPNs
- It is basically an extension to the Martini draft
- Industry Support:
 - Riverstone
 - Nortel
 - Alcatel/Timetra
 - Foundry
 - Extreme
 - Cisco

draft-ietf-l2vpn-vpls-bgp-00.txt

- Uses BGP for signaling and discovery
- Similar to RFC2547 on signaling
- Similar to Martini on encapsulation
- Industry Support
 - Juniper

Agenda

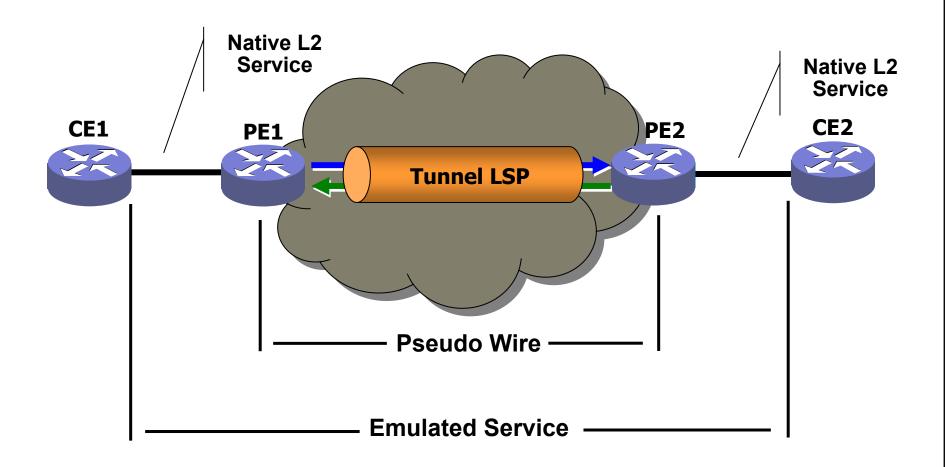
- Overview
- IETF Status
- Review: Martini draft
- LDP and BGP signaling approaches
- Operation: Control Plane
- Operation: Data Plane
- Scaling VPLS: HVPLS
- Comparison: VPLS and RFC2547
- References

Martini Tunnels MPLS Point-to-Point Service

- Point-to-Point tunnel to transport L2 frames across a MPLS backbone;
- 2 uni-directional LSPs forming a bi-directional pipe;
- There's a draft defining signaling and several drafts defining the encapsulation of frames;

Martini Encapsulation Types

- Frame Relay
- ATM (7 modes available)
- Ethernet VLAN
- Ethernet
- PPP
- HDLC
- SONET/SDH



Martini Control Protocol

- Extends LDP to signal "demultiplexor" labels for the pseudowires;
- Uses Targeted LDP sessions for label distribution;
- Tunnel LSPs can be Traffic Engineered for specific QoS demands

Martini Reference Model

LDP Details

- Label Mapping messages are exchanged between participating PEs to create the tunnels
- Message has:
 - FEC TLV
 - PWid FEC Element or
 - Generalized ID FEC Element (not used often)
 - Label TLV
 - Generic LDP Label TLV
- Label Withdrawal messages are used to tear down the tunnels;

PWid FEC TLV Format

PW TLV	С	PW Type	PW Info Length			
PW Group ID						
PW ID						
Interface Parameters						
"						
"						

Interface Parameters TLV

Parameter ID	Length	Variable Length Value		
Variable Length Value				

Interface Parameters TLV

Generic TLV format with the following possible IDs:

- 0x01: Interface MTU
- 0x02: Max Number of concatenated ATM cells
- 0x03: Interface Description
- 0x04: CEP Payload Bytes
- 0x05: CEP options
- 0x06: Requested VLAN ID
- 0x07: CEP/TDM bit Rate
- 0x08: Frame Relay DLCI length
- 0x09: Fragmentation Indicator

PW Status Checking

- Uses LDP Notification Messages
- Optional, negotiated in the tunnel setup
 - If TLV is present on initial PWID FEC Message, use it; else, use label mapping / withdrawal messages;
- Includes PWID FEC TLV without the interface parameters
- Wildcard Status Notification uses only Group ID

PW Status Notification Message

0	Notification (0x0001)		Message Length				
Message ID							
	PW FEC TLV						
1	0	PW Status	Length				
	Status Code						

PW Status Codes

32 Bit Mapped Field:

- 0x00: PW Forwarding (clear all)
- 0x01: PW not Forwarding
- 0x02: Customer TX Fault
- 0x04: Customer RX Fault
- 0x08: Tunnel TX Fault
- 0x10: Tunnel RX Fault

Agenda

- Overview
- IETF Status
- Review: Martini draft
- LDP and BGP signaling approaches
- Operation: Control Plane
- Operation: Data Plane
- Scaling VPLS: HVPLS
- Comparison: VPLS and RFC2547
- References

LDP and BGP drafts

- Turned into a religious debate
 - There will be BGP proponents
 - There will be LDP proponents
- Two different problems at stake:
 - Auto-discovery
 - Signaling
- There are pros and cons with each approach
 - Trade-off between operational comfort and efficiency

Two different problems: Discovery and Signaling

PE Discovery:

- Provisioning Application
- BGP
- Radius

Signaling:

- Targeted LDP
- BGP

BGP Signalling

- "Operational Comfort"
 - Same signaling mechanism used in BGP VPNs
 - 1 Signaling Protocol
- Distribution of Label Information
 - Broadcast Mode
 - For VPLS, only a subset of BGP participants require relevant VPN information (unlike route distribution where all participants are interested for best path selection)

LDP Signaling

- Designed specifically to set up point-to-point connections
 - Used in Martini pseudowire services
 - The VPLS LPD draft only defines a simple extension to Martini's FEC
- Efficient signalling of per pseudowire information that needs to be negotiated after the label exchange:
 - Traffic parameters
 - OAM

Autodiscovery

- There's a draft for BGP autodiscovery:
 - draft-ietf-l3vpn-bgpvpn-auto-00.txt
 - Same mechanism as BGP VPNs
 - Can be as easily integrated with VPLS-LDP approach as with VPLS-BGP approach
- There's another draft for RADIUS discovery:
 - draft-heinanen-radius-pe-discovery-04.txt
 - Supports site authentication
- Clearly the BGP approach is the preferred one

Operating a VPLS service requires much more than autodiscovering PE members and running one signaling protocol

Operating a VPLS Service

- OSS (Operations & Support Systems)
 - #1 barrier to deployment
 - Need to provision and manage VPNs
 - Site specific information
 - VPN specific information
 - Fault and Performance Management

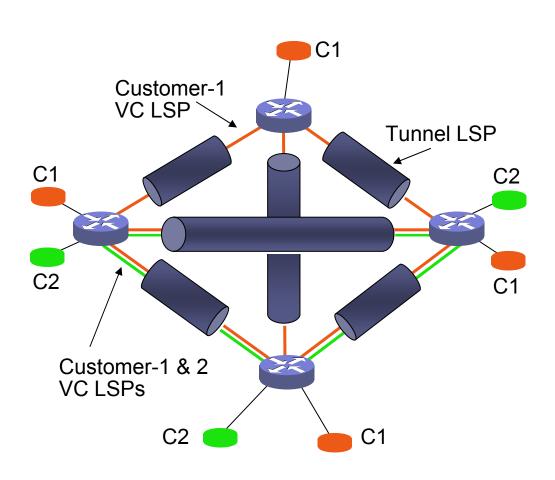
End-to-end service management

Fault to customer correlation

VPN performance reports

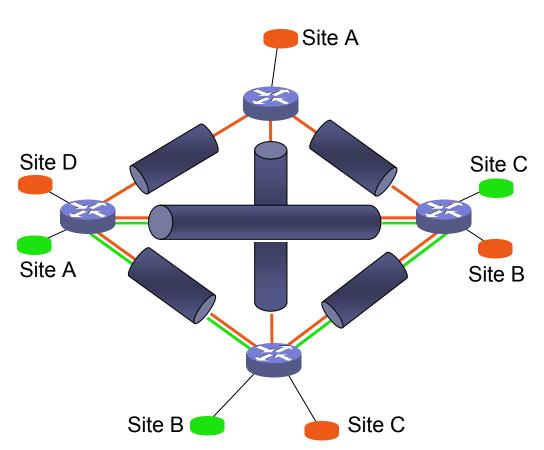
Agenda

- Overview
- IETF Status
- Review: Martini draft
- LDP and BGP signaling approaches
- Operation: Control Plane
- Operation: Data Plane
- Scaling VPLS: HVPLS
- Comparison: VPLS and RFC2547
- References



VPLS Control Plane

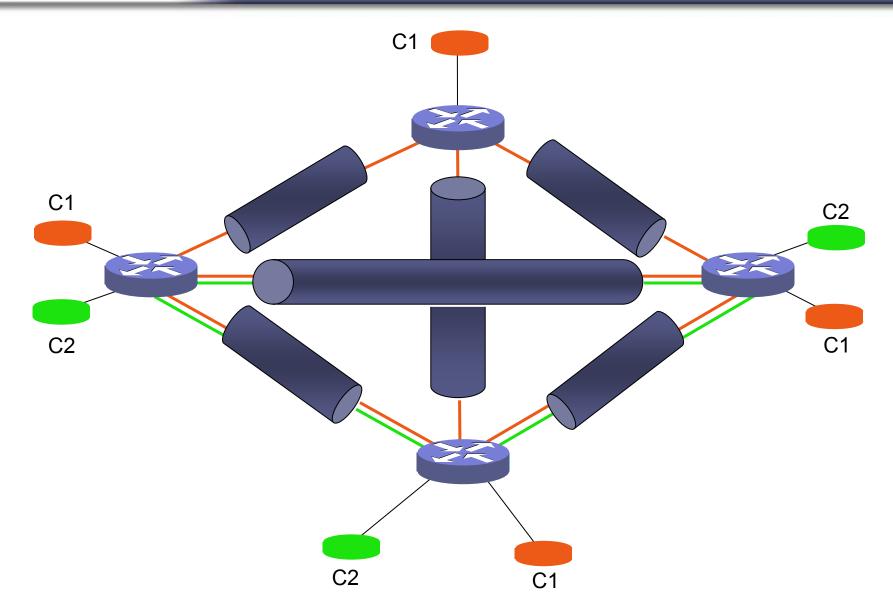
- Differs depending on the implemented draft
 - BGP: like BGP VPNs
 - LDP: like Martini tunnels
- Both assume tunnel LSPs between PEs
- This presentation focuses on LDP signalling as it's the most implemented draft today


Implementation Details LSP Topology

- Tunnel LSPs are established between PEs
 - Full Mesh simplifies loop resolution, as Ethernet is a broadcast capable technology
- VC LSPs are set up over Tunnel LSPs
 - VC-ID is now VPN-ID
- Each PE creates a rooted tree to every other PE
- All PEs implement a splithorizon scheme

Loop Resolution

- A full mesh topology with bridges requires a loop resolution mechanism
- In VPLS, the rule of thumb is: "Don't flood a packet received on a VC to the other VCs"
- Flooding is only done from customer facing ports to the VCs (splithorizon)
- No Spanning Tree needed!



VPLS Signaling

- Full Mesh of tunnel LSPs between VPLS PEs
 - Best Effort via LDP
 - Traffic Engineered via RSVP-TE
- Per-Service VC labels are negotiated using the same mechanism used in Martini tunnels
 - Targeted LDP

VPLS Control Plane Setup

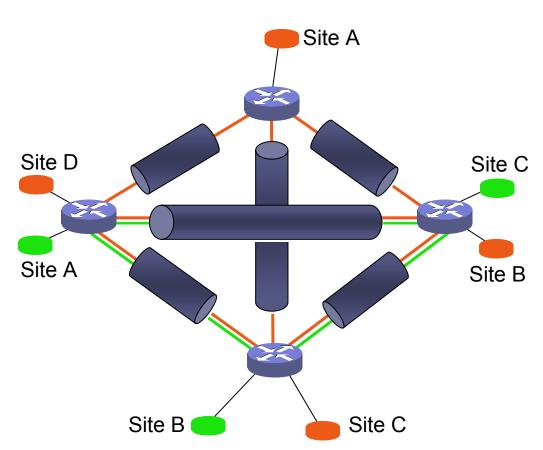
VLL/VPLS Provisioning

Tunnel LSPs

- Typically traffic engineered via RSVP-TE
- Typically protected
 - Backup paths
 - Fast Reroute
- Established between POPs

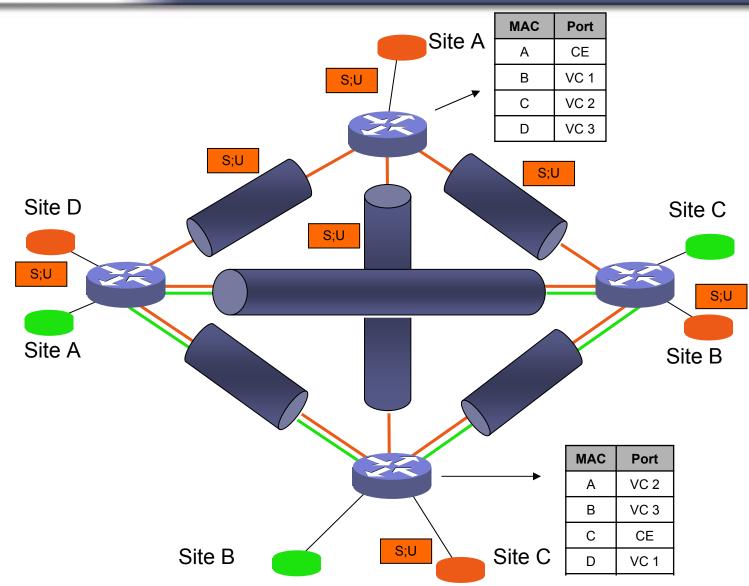
VC LSPs

- Signaled via LDP
- Established between customer sites in the same VPN
- Nested within tunnel LSPs
 - RSVP routers configured to tunnel LDP messages for end-toend LDP sessions



Learning and Forwarding

- VPLS network looks like a L2 switch to the customer
- As a L2 switch, the VPLS cloud must:
 - Learn MAC addresses
 - Flood packets with unknown addresses
 - Flood Multicast packets
 - Flood Broadcast packets
 - Age out MAC addresses
- The PEs create a VSI per VPLS instance


Address Learning

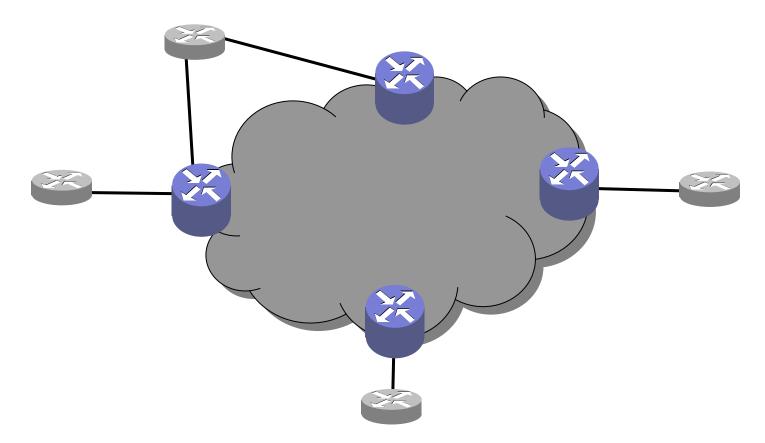
- Dynamic MAC address learning on PEs
- Each PE must learn
 - On customer facing ports
 - On VC LSPs
- Each PE must age out MAC addresses
- Packets are forwarded based on the MAC table

Example

Fast Convergence

- An optional MAC Withdrawal Message to communicate MAC withdrawals between PEs is defined
- Uses LDP Address Withdrawal Messages with a FEC TLV and a new MAC TLV
- This scheme can be used to improve the convergence time in the case of a failure
- Useful mainly for multi-homed MTU in hierarchical topologies or multi-homed CE

MAC TLV


UF	Type (0x0404)	Length
MAC Address #1		
MAC Address #2		
MAC Address #n		

- If the message has a list of MAC addresses, they must be relearned on the received pseudo-wire
- If the message has an empty list, all MAC addresses must be flushed from the VPLS table except the ones already learned through the pseudo-wire

Multi-Homed CE Topology

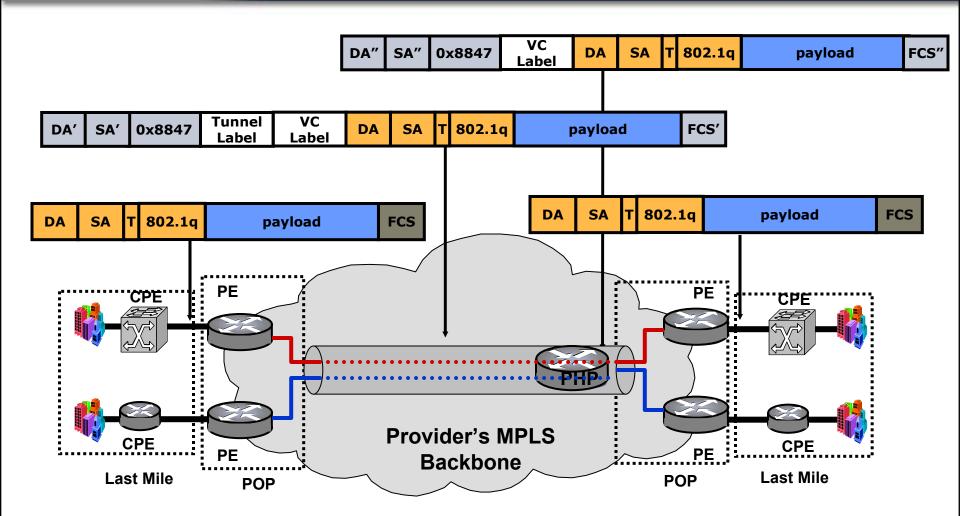
- Spanning Tree transparently tunneled across the VPLS domain
- PE could look for Topology Change messages to flush the MAC table using the MAC Withdrawal TLV

Agenda

- Overview
- IETF Status
- Review: Martini draft
- LDP and BGP signaling approaches
- Operation: Control Plane
- Operation: Data Plane
- Scaling VPLS: HVPLS
- Comparison: VPLS and RFC2547
- References

VPLS Data Plane

- Uses the same encapsulation method defined by Martini (draft-ietf-pwe3-ethernetencap-02.txt)
- Preamble and FCS are stripped from original Ethernet frame, which is then encapsulated into a MPLS frame
- Transparently transports the Ethernet frame through the MPLS Network



Service Delimiting VLANs

- An important concept is the "Service Delimiting VLAN"
- If the VLAN was defined by the provider to identify the customer or the service, it is a Service Delimiting VLAN;
 - The VLAN tag should be stripped from the frame
- If the VLAN is used to define multiple L2 domains inside the customer network, it is not a Service Delimiting VLAN;
 - The VLAN tag should be kept in the frame

Life of a Frame

VPLS PE Tasks

At ingress:

- Map port or port/VLAN-id to Service-id/FIB
- Look up dest. MAC in FIB -> dest. PE
- Apply VC-label to customer packet
- Apply tunnel label & send packet

At egress:

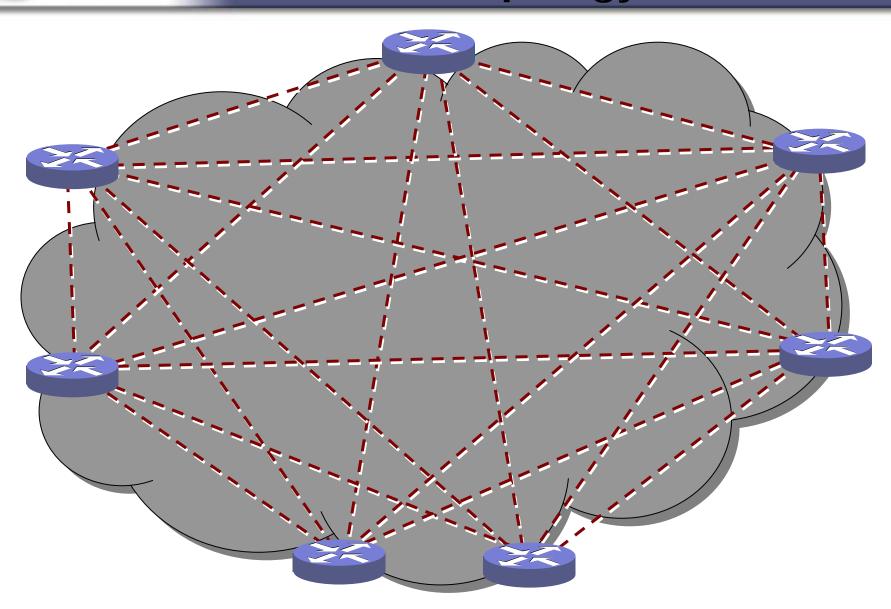
- Tunnel label popped to reveal VC-label
- Look up VC-label -> Service-id/FIB
- Map dest. MAC in FIB -> Egress port
- Send original Ethernet frame

Agenda

- Overview
- IETF Status
- Review: Martini draft
- LDP and BGP signaling approaches
- Operation: Control Plane
- Operation: Data Plane
- Scaling VPLS: HVPLS
- Comparison: VPLS and RFC2547
- References

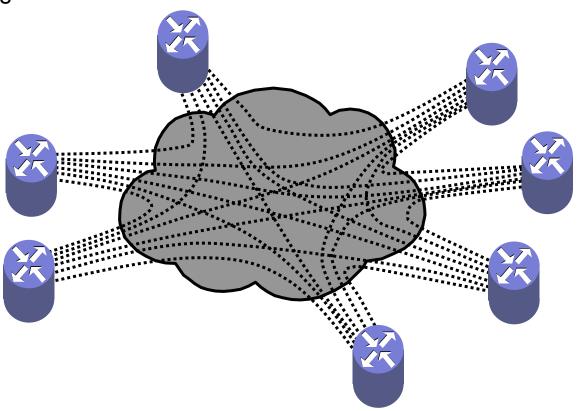
VPLS Scaling Aspects

- Signalling
 - Number of peers
 - Number of LSPs
- Number of packet replications
- MAC Address Learning
- Provisioning

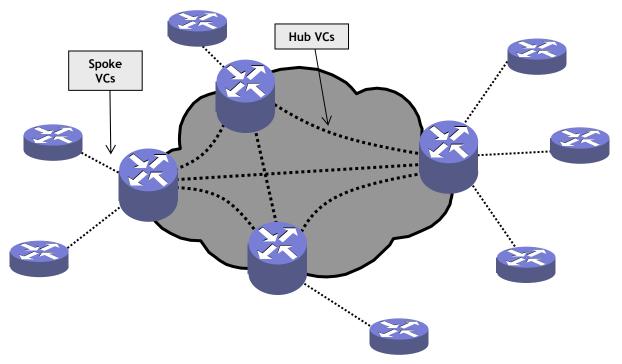

Hierarchical VPLS

- In order to better scale a VPLS network, hierarchy is introduced: HVPLS
- Hierarchy achieved through a hub and spoke topology between MTUs and PEs, reducing the number of full mesh tunnels
- Enhanced scaling in the following areas:
 - Signaling
 - Packet Replication
 - Provisioning

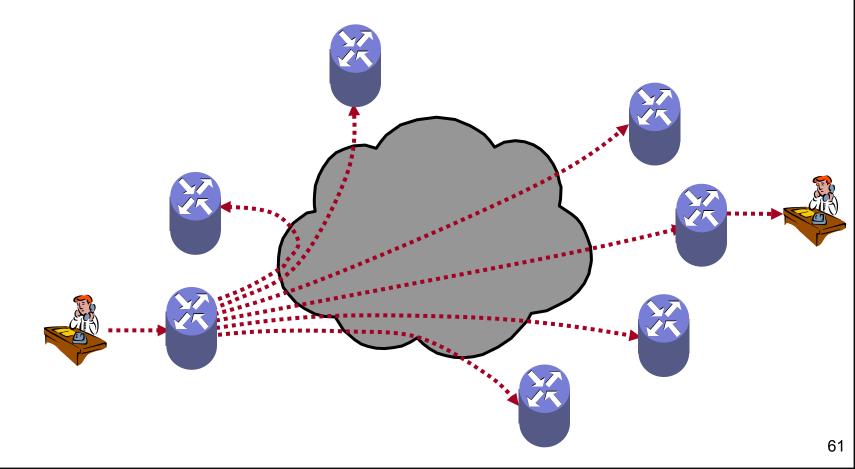
Plain VPLS Topology


H-VPLS Topology

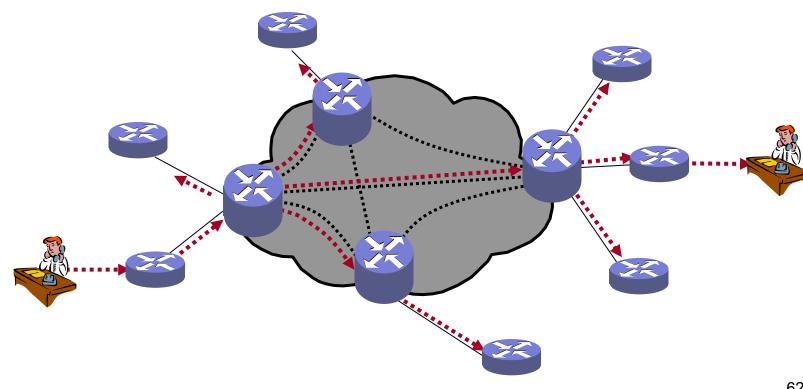
Scaling VPLS: Signaling


- Flat Topology (Basic VPLS architecture)
 - N² T-LDP sessions
 - N² Tunnels (RSVP-TE or LDP)
 - N² VC LSPs

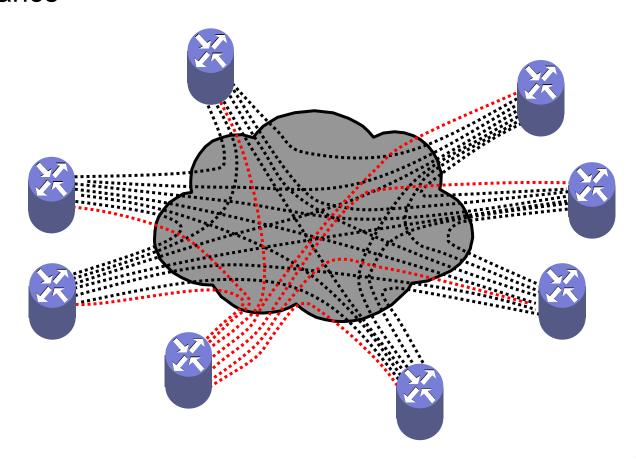
Scaling VPLS: Signaling


- Tree Topology: Hierarchical VPLS (HVPLS)
 - O(N) T-LDP sessions
 - O(N) Tunnels (RSVP-TE or LDP)
 - O(N) VC LSPs

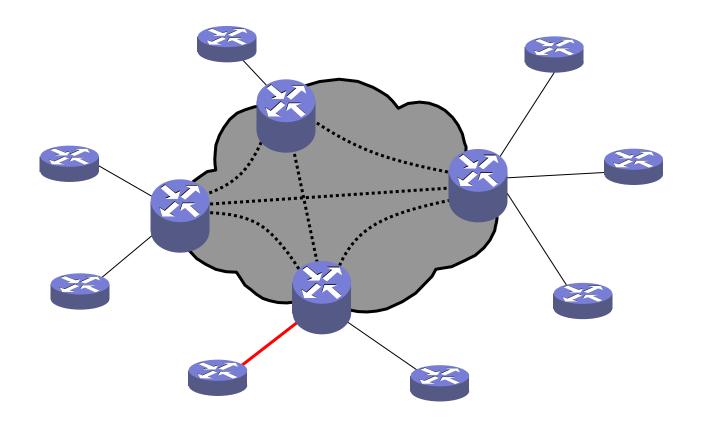
Scaling VPLS: Packet Replication


- Flat Topology (Basic VPLS architecture)
 - Replication at the very edge of the network
 - Close to the source

Scaling VPLS: Packet Replication

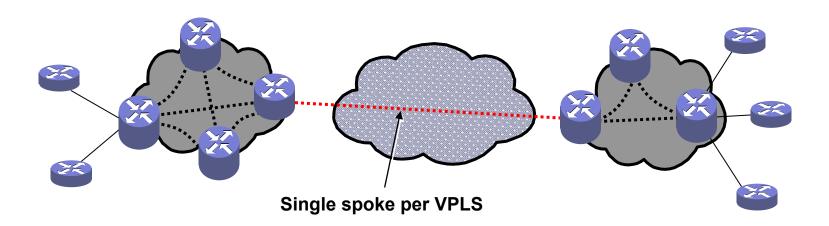

- Tree Topology: Hierarchical VPLS (HVPLS)
 - Distributed replication across spoke and hub PEs
 - Limited to directly adjacent connections
 - Replication as close to destination as possible

Scaling VPLS: Provisioning


- O(N) effort to add a new site
 - Configuration of all PEs participating in VPLS Instance

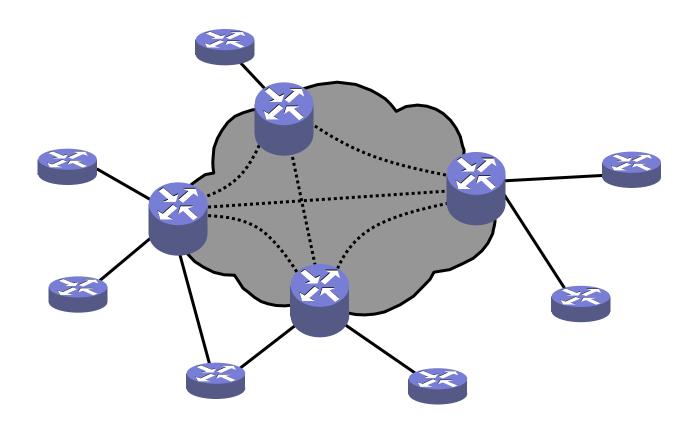
Scaling VPLS: Provisioning

- O(1) effort to add a new site
 - Configure new spoke on corresponding PE


Scaling VPLS: MAC Addresses

- VPLS FIB Size depends on the type of <u>Service</u> Offering:
 - Switch interconnect
 - Multiple MAC addresses per site
 MAC limiting per access circuit
 - Router Interconnect
 - One MAC address per site
- Same Network Design principles apply for
 - MAC FIB Size of VPLS Service
 - Route Table Size of RFC2547 Service

Inter Domain HVPLS


- Single spoke LSP between 2 domains
- Specific VPLS Gateway functions to interconnect multiple domains to be defined in the future

Multi-Homed MTU with Martini

- Two Martini tunnels used for redundancy
- No Spanning Tree needed: one active, one stand-by
- MAC Withdrawal Messages speed up convergence

VPLS OAM

- Work in progress
 - draft-stokes-vkompella-ppvpn-hvpls-oam-02.txt
- Uses data plane initially, and then the control plane to verify errors
- Another draft to be created on VPLS MIBs

VPLS OAM Facilities

VPLS Ping

- Extension to draft-ietf-mpls-lsp-ping-04.txt
- Similar to IP Ping

VPLS Traceroute

- Used to trace the data path
- Similar to IP Traceroute

Agenda

- Overview
- IETF Status
- Review: Martini draft
- LDP and BGP signaling approaches
- Operation: Control Plane
- Operation: Data Plane
- Scaling VPLS: HVPLS
- Comparison: VPLS and RFC2547
- References

VPLS and BGP VPNs

VPLS:

- L2 VPNs
- Transports Ethernet
- Needs LDP, may use RSVP-TE for tunnels
- Creates a VSI per VPN
- Forwarding based on MAC tables
- CE can be a router or a switch

RFC2547:

- L3 VPNs
- Transports IP
- Needs BGP, plus LDP or RSVP-TE
- Creates a VRF per VPN
- Forwarding based on IP route tables
- CE must be a router

Agenda

- Overview
- IETF Status
- Review: Martini draft
- LDP and BGP signaling approaches
- Operation: Control Plane
- Operation: Data Plane
- Scaling VPLS: HVPLS
- Comparison: VPLS and RFC2547
- References

References

- www.rfc-editor.org for IETF drafts
- http://www.riverstonenet.com/technology/tls .shtml for a whitepaper on VPLS/TLS
- http://www.riverstonenet.com/technology/m pls ethernet.shtml for a whitepaper on Metro Ethernet using MPLS

Obrigado!