### Convergência de Redes ATM/FR & IP/MPLS

#### **GTER18**

Rodrigo Loureiro

rloureiro@juniper.net

# Juniper<sup>M</sup>

### Agenda

- Introdução
- Building Blocks
  - Modelos de Convergência
  - Mecanismos de Transporte
  - Qualidade de Serviço
- ATMoMPLS

### Today's Increasingly Networked World



### The Industry Has Two Choices



- Segregated, uniquely managed virtual networks
- Provides end-end assurances appropriate to application
- Dynamic service options increase revenues/ customer

## The Infranet Standard Model (<u>http://www.infranet.org</u>)



### Agenda

- Introdução
- Building Blocks
  - Modelos de Convergência
  - Mecanismos de Transporte
  - Qualidade de Serviço
- ATMoMPLS

### Parallel Cores at a glance



### ATM Core Off-load at a glance





#### Mecanismos de Transporte



#### Pseudo Wire Emulation (Draft-Martini) Support



#### **Application**

 Allows Service Provider to build point to point circuits over MPLS core using LDP signaling

#### How it works?

- Provider pre-provisions tunnel LSPs
- Provider provisions Virtual Circuit LSPs one per customer site
- Layer 2 frame encapsulated in MPLS

#### **Encapsulations supported**

- Ethernet VLAN & Port
- PPP, HDLC Port to Port, DS0 to DS0
- Frame Relay DLCI to DLCI, Port to Port
- ATM AAL5 VC to VC, Port to Port
- ATM Cell Mode VC to VC, Port to Port
- ATM Cell Relay Mode
- L2-interworking (any-any) supported for IP

### ATM over PWE

- There are currently two modes of carrying ATM traffic over Pseudo Wires:
  - AAL5 mode: ATM cells are SARed into AAL5 packets before transport over MPLS
  - Cell-Relay: ATM cells are carried directly into MPLS packets. Cellrelay can be done in different granularity:
    - VC mode
    - VP mode
    - Port mode
  - Cell-relay in Port mode and VP mode are best suited for convergence applications.



- Martini (L2circuit) AAL5 Mode
  - Flag bits are used to indicate:
    - T: Packet contains an ATM Cell (OAM) or AAL5
    - E: EFCI for Explicit Forward Congestion Indication
    - L: CLP for cell loss priority
    - C: C/R for FRF 8.1 FR/ATM service interworking

### PWE (L2circuit) Cell-Relay



- One or more cells are concatenated
  - Maximum number of cells is limited by network MTU, and is optionally negotiated with far-end ingress router; the number of cells/bundle must not exceed far-end limit
  - Cells are bundled per VC, per VP or per Port
  - cell\_bundle\_size is a local configuration option

### OAM in Cell-Relay mode

- In Cell-relay mode, OAM cells received by PE are transparently forwarded to LSP
- When LSP failure is detected, PE generates OAM AIS cell towards the CE
- For VC-mode Cell-relay, F5 OAM AIS is generated
- For VP-mode Cell-relay, F4 OAM AIS is generated on VPI.4
- For Trunk-mode Cell-relay, F4 OAM AIS is generated on Trunk.4
- For Port-mode Cell-relay, no OAM cell is generated
- Sends AIS cells every second until the failure disappears



Juniper your



#### Qualidade de Serviço



### MPLS QOS: How do we turn COS into QOS?

- Diffserv is usually associated with Class of Service or Differentiated Services
- ATM demands quality of service or assured experience (e.g, CBR traffic)
- This is attainable through smart combination of new MPLS features intended for ATM convergence:
  - E-LSPs, L-LSPs, Diffserv-Aware Traffic Engineering
  - Per LSP QOS enforcement
  - Per LSP Traffic Class Policing and Admission control at the ingress

### DiffServ

- Give different forwarding treatment (per-hopbehavior, PHB) to traffic based on the "class-ofservice" classification.
- From a practical point of view: assign traffic to different queues and partition the resources among the queues.
- For IP packets, the "class-of-service" is marked on the packet itself, in the 6-bit DSCP field.



### MPLS DiffServ

- For MPLS packets, the "class-of-service" needs to be encoded in the MPLS header.
- The only available field, 3-bit EXP field.



### The MPLS DiffServ problem

- How to map between 6-bit IP DSCP field (64 values) and 3-bit MPLS EXP field (8 values)?
- Solution:
  - If only 8 values are used, they can be encoded in the EXP bits -> E-LSPs (E stands for EXP)
  - If more than 8 values are used, use the label and the EXP bits to convey the info -> L-LSPs (L stands for label) – requires extra signaling

### MPLS DiffServ - E-LSPs



- Support of EF and AF1 on an E-LSP
  - EF and AF1 packets travel on single LSP (single label)
  - Packets have different MPLS EXP values and are placed into different queues

### MPLS DiffServ - L-LSPs



#### EF

- Support of EF and AF1 on L-LSPs
  - EF and AF1 packets travel on different LSPs (different labels)
  - Packets are placed into different queues based on the label

### The "TE" in DiffServ-TE

- Constraint-based routing enforce different bandwidth constraints for different classes of traffic.
- Admission control per-class (at the time the LSP is established).
- Requires extensions to RSVP and the IGPs

### Terminology – Class-type (CT)

- Class-Type (CT or traffic class): collection of traffic flows that will be treated equivalently from a DS-TE perspective.
- Maps to a queue, equivalent to the class-ofservice "forwarding-class" concept.
  - CT0: Best effort
  - CT1: Expedited forwarding
  - CT2: Assured forwarding
  - CT3: Network control

### **Priorities and preemption**

- The idea: some LSPs are more important than others, and can "kick out" the less important ones, when resource contention occurs.
- Happens at setup time, not at forwarding time.
- Eight priority levels:
  - Priority 0 (best)
  - Priority 7 (worst)

### How is bandwidth accounted?

The IETF defined bandwidth models.

 They determine the partitioning of BW among the different CTs



### BW model MAM (maximum allocation)

- The available bandwidth is partitioned between the CTs
- No sharing is allowed.
- Unused resources cannot be used by other CTs. Good or bad? Both...



### BW model RDM (Russian dolls)

- The available bandwidth is partitioned between the CTs.
- Sharing is allowed.
- Requires using preemption to ensure bandwidth guarantees to CTs.













### Multiclass E-LSPs Advantages

- Multiple classes per LSP means fewer LSPs in the core
- The bandwidth reservation is made for several classes at the same time reducing resource consumption and set up time
- Emulates ATM trunks better due to fate-sharing among different classes
  - ATM trunk has multiple classes CBR, VBR-rt, etc.
  - If one fails and reroutes, all should fail and reroute like ATM

### LSP Input Policing

- All the hard work of establishing LSPs and marking the traffic is for nothing if more traffic is pushed on the LSPs than what we reserved.
- LSP policers ensure that traffic stays in profile.
- The policing is done per CT. The policers are configured in a filter that is attached to the LSP.



### L2circuit CAC

- Don't bring up the layer 2 circuit unless there is enough bandwidth available on the underlying LSP.
- Avoids overloading the underlying LSPs, ensuring service quality for all circuits using it.



### Agenda

- Introdução
- Building Blocks
  - Modelos de Convergência
  - Mecanismos de Transporte
  - Qualidade de Serviço
- ATMoMPLS



#### Juniper Yoy Net

### ATM over MPLS Trunk

- Trunk consists of 32 VPIs
- 32 NNI trunks and 7 UNI trunks
- Customized ATM cell header
- Each trunk corresponds to a PWE3/Martini L2 Circuit



### VC to MPLS QoS Mapping











### Referências

**MPLS Diffserv-Aware Traffic Engineering** 

http://www.juniper.net/solutions/literature/white\_papers/200048.pdf

Inter-Carrier Capabilities for IP/MPLS Networks

http://www.infranet.org/learn/literature/inter-carrier.pdf

Migration Strategies for IP Sevice Growth: Cell-Switched MPLS or IP-routed MPLS

http://www.juniper.net/solutions/literature/white\_papers/200026.pdf

**Transport of Layer 2 Frames Over MPLS** 

draft-martini-l2circuit-trans-mpls-09.txt

Encapsulation Methods for Transport of ATM Cells/Frame Over IP and MPLS Networks

draft-martini-atm-encap-mpls-00.txt

### Referências

**MPLS Support of Differentiated Services** 

**rfc3270** 

**Requirements for support of DS-aware MPLS TE** 

Rfc3564

**Protocol extensions for support of DS-aware MPLS TE** 

draft-ietf-tewg-diff-te-proto-05.txt

Russian Dolls Bandwidth Constraints Model for DS-aware MPLS TE

draft-ietf-tewg-diff-te-russian-03.txt

Max Allocation Bandwidth Constraints Model for DS-aware MPLS TE

draft-ietf-tewg-diff-te-mam-00.txt





### Dúvidas ?

