

Carrier Ethernet Standards Progress

Igor Giangrossi Sr. Systems Engineer, CALA

Agenda

- History
- Metro Ethernet Forum work
- IETF work
- IEEE work
- Conclusion

Ethernet Evolution

- What do we like about Ethernet?
 - Data plane
 - Speeds
 - Flexible frame size
 - Native broadcast & multicast
 - Low cost
- What do we dislike about Ethernet?
 - Control plane (i.e. STP)
 - Management plane (i.e. OAM)
 - Flat addressing scheme

Carrier Ethernet History

- Early Ethernet based services based upon
 - Standard Ethernet Switches
 - QinQ Switches (now 802.1ad)
- Challenges
 - Lack of scalability (4K VLANs / MAC learning)
 - Limited Traffic Engineering (STP/ MSTP)
 - Limited QoS (802.1p)
 - Limited Protection (STP/ RSTP)

Carrier Ethernet Market

- Carrier Ethernet market was around USD155M in 2004, and has potential to pass USD1B in 2007
- Carrier Ethernet switch/routers is the set of products showing the greatest amount of activity
- Operators worldwide are using Carrier Ethernet to support Ethernet enterprise services and residential triple play services

Riverstone Networks

METRE thernet Forum

Metro Ethernet Forum Work

What is Carrier Ethernet?

Protection

- 50ms Protection
- End to End Path Protection
- Aggregated Line & Node Protection

Hard QoS

Guaranteed end to end SLA End to End CIR and EIR Business, Mobile, Residential

• Services and Bandwidth

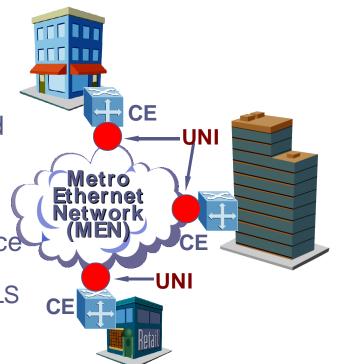
- 100,000's of EVC's
- From Mbps to x10Gbps

Carrier Ethernet

Service Management

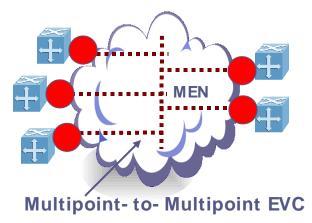
- Fast service creation
- Carrier class OAM capabilities
- Customer Network Management (CNM)

TDM Support


- Seamless integration of TDM Circuit Emulation Services
- Support existing voice applications

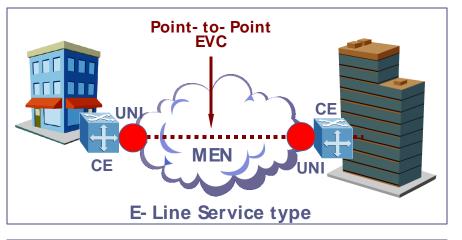
Ethernet Service Basic Model

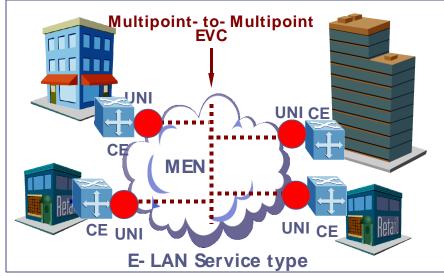
- Customer Equipment (CE) attaches to UNI
- CE can be
 - router
 - IEEE 802.1Q bridge (switch)
- UNI (User Network Interface)
 - Standard IEEE 802.3 Ethernet PHY and MAC
 - 10Mbps, 100Mbps, 1Gbps or 10Gbps
- Metro Ethernet Network (MEN)
 - May use different transport and service delivery technologies
 - SONET/SDH, WDM, RPR, MiM, QiQ, MPLS


Ethernet Virtual Connection (EVC)

- An EVC is "an instance of an association of 2 or more UNIs"
- EVCs help visualize the Ethernet connections

 Like Frame Relay and ATM PVCs
- MEF has defined 2 EVC types
 - Point-to-Point
 - Multipoint-to-Multipoint


EVCs help conceptualize the service connectivity


E-Line and E-LAN Service Types

- E-Line Service used to create
 - Private Line Services
 - Ethernet Internet Access
 - Point-to-Point VPNs
- E-LAN Service used to create
 - Multipoint VPNs
 - Transparent LAN Service

Service Types defined in MEF ESD Spec.

Carrier Ethernet Specifications

Reliability

- MEF 2 Ethernet Protection
- MEF 4 Architecture Framework
- MEF Service Attributes II

Carrier

Ethernet

Scalability

- MEF 4 Architecture Framework
- MEF 12 Eth Layer Architecture
- MEF 6 Service Definition
- MEF 11 UNI Framework
- MEF 9 UNI Testing
- MEF 10 Service Attributes
- MEF 13 UNI I IA
- MEF UNI Type II
- MEF Ethernet Aggregation

Service Management

- MEF 7 EMS and NMS Info Model
- MEF 15- NE Management Requirements
- MEF OAM Framework & Requirements
- MEF E- LMI
- MEF Performance Monitoring

TDM Support

- MEF 3 CES Framework
- MEF 8 CES Implementation
- MEF TDM Testing

Hard QoS

- MEF 6 Service Definition MEF 10 – Service Attribute MEF 14 - Service Attribute Testing
- MEF Service Attributes II
 - MEF Service Definition II

The MEF Certification

- Ensures ensure global equipment/services compliance to the MEF standards and resulting interoperability
- 39 devices from 16 vendors received certification to MEF 9

• On October 13, the MEF launched Ethernet Service Certification to certify service providers. Tier 1 providers committed to it.

• November 2nd MEF approved MEF 14 certification testing

Riverstone Networks

IEEE Work

Provider Bridges (802.1ad)

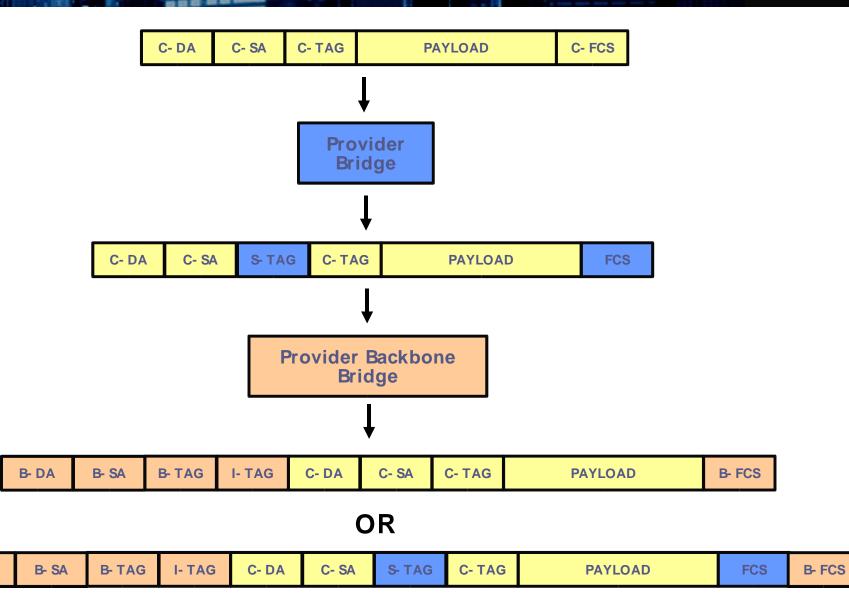
• Standardizes QinQ/ Stacked VLANs

- New Definitions:
 - C- VLAN/ C- TAG: Customer (internal)
 - S- VLAN/ S- TAG: Service (external)
 - DE: Drop Eligible bit
 - CFI in S-TAG
 - Derived from PCP (802.1p) in C-TAG
 - Etype 0x88A8 for S- VLAN TAG

Provider Bridges (802.1ad)

- Work is considered to be done (draft 6)
- It does not solve:
 - Lack of scalability (4K Services / MAC learning)
 - Limited Traffic Engineering (STP/ MSTP)
 - Limited QoS (802.1p)
 - Limited Protection (STP/ RSTP)

Provider Backbone Brides (802.1ah)



- Also know as MACinMAC
- The objective is to connect multiple 802.1ad networks in a scalable way
- New Definitions:
 - B- MAC: Backbone MAC addresses
 - B- TAG/ B- VLAN: Backbone VLAN (tunnel)
 - I- TAG/ I- SID: Service Instance TAG/ ID:

Priority DE Subtype/ Version	I- SID
---------------------------------	--------

802.1ah Encapsulation

B-DA

Provider Backbone Brides (802.1ah)

- Work on the initial stage only (to be finished in 2007)
- Many topics under discussion
- It does not solve:
 - MAC scalability (Backbone MACs+ Customer MACs in PBB Edge Nodes)
 - Limited Traffic Engineering (STP/ MSTP)
 - Limited QoS (802.1p)
 - Limited Protection (STP/ RSTP)

Connectivity Fault Management (802.1ag)

- Provides end-to-end OAM functionality to Ethernet
- Receiving input from MEF and ITU (Y.17ethoam)
- New definitions:
 - MEP: Maintenance End Point
 - MIP: Maintenance Intermediate Point
 - MA: Maintenance Association
- Complements 802.3ah Ethernet in the First Mile – OAM functions
- Work to be finished in 2007

Connectivity Fault Management (802.1ag)

- OAM Functions:
 - Continuity Check (CC)
 - Loopback (L2 ping)
 - Link Trace (L2 traceroute)
 - Alarm Indication Signal (AIS) may be removed
 - Intrusive Loopback being considered
- Provides 8 levels of maintenance domains
- Uses Ethernet frames to perform the OAM functions
 - Multicast frames with bridge group addresses (01-80-C2-XX-XX-XX)
 - Frame formats under discussion

Shortest Path Bridging (802.1aq)

- Objective: to use SPF to build one tree for each node, optimizing transmission paths
- Eliminates Spanning Tree from the network
- Alternative to IETF's Rbridge (more later)
- First draft not ready yet, to be finalized by the end of 2008

Other Intersting WG

- Two-port MAC Relay (802.1aj)
- Multiple Registration Protocol (802.1ak)
- Residential Ethernet
- 802.3 Network Congestion Management

Riverstone Networks

IETF Work

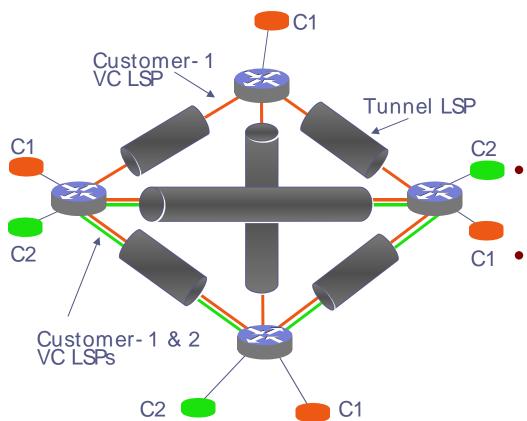
Carrier Ethernet with MPLS

- The IETF uses MPLS (VPLS) to transport Ethernet frames
- <u>Most</u> Ethernet Challenges solved by MPLS/ VPLS based solutions
 - 4K VLAN limitation → MPLS Labels
 - STP limitations → IP/ MPLS Routing, MPLS TE, VPLS full mesh
 - Limited $QoS \rightarrow MPLSTE$, DiffServ
 - Limited Protection → Backup LSP, Fast Reroute
 - OAM \rightarrow VCCV, LSP PING, BFD

IETF VPLS Standards

- VPLS Standards
 - There are 2 VPLS IDs that the IETF intends to progress as RFCs
 - draft-ietf-l2vpn-vpls-ldp
 - draft-ietf-l2vpn-vpls-bgp
 - Final revision of VPLS- LDP draft (- 08) submitted to IETF
 - Current Status: Proposed Standard
 - IESG Review

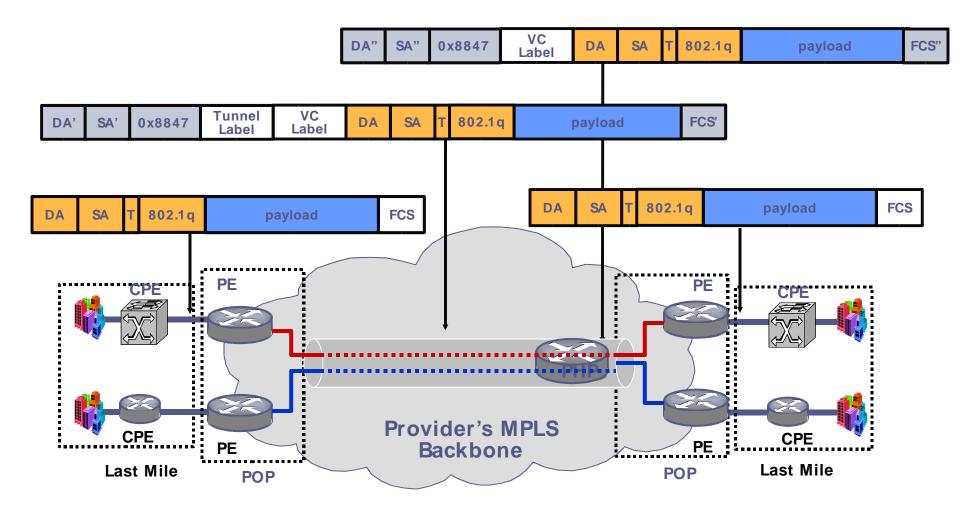
VPLS Standards Status



- VPLS draft dependencies
 - draft-ietf-pwe3-ethernet-encap
 - Status: Proposed Standard
 - IESG Evaluation
 - draft-ietf-pwe3-control-protocol
 - Status: Proposed Standard
 - RFC Editor queue
- VPLS drafts to be placed in RFC editor queue as soon as final IESG comments are provided

- Expected RFC status: Early 2006

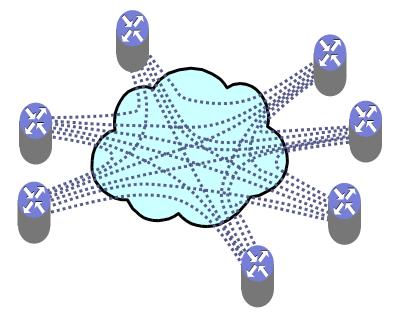
Implementation Details

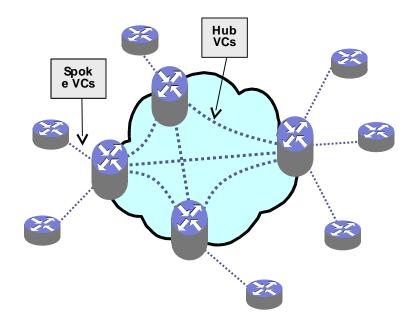


- Tunnel LSPs are established between PEs
 - Full Mesh simplifies loop resolution, as Ethernet is a broadcast capable technology
- VC LSPs are set up over Tunnel LSPs
 - Like VPI/ VCI in ATM
- All PEs implement a split-horizon scheme: NO SPANNING TREE IN THE NETWORK

Life of a Frame in VPLS

Scaling VPL




Flat VPLS TopologyFull mesh

- Ingress replication For networks with < 40 PEs

Hierarchical Topology (HVPLS)
Partial mesh (hub & spoke)
Distributed replication

- For networks > 40 PEs

Other IETF Ethernet Developments

- TRILL (Transparent Interconnection of Lots of Links)
 - Proposes the use of IP routing to STP in an Ethernet network
 - Similar to IEEE's SPF Bridging
- GELS (GMPLS controlled Ethernet Label Switching
 - Proposes to use GMPLS control plane directly in Ethernet

Riverstone Networks

Conclusions

Which is the best option?

- VPLS is the favored approach to deploy scalable Ethernet Services
 - The only scalable multipoint Ethernet service so far
 - Has addressed key multipoint challenges
 - New proposals are either p2p or face identical challenges
 - Deployed & Mature Standard
 - Same underlying technology from edge to core
 - Ease of management: Same provisioning, same OAM
- VPLS will keep being enhanced
 - Can evolve as service layer over multiple co-ps technologies such as PBT.
 - VPLS Multicast enhancements being defined
 - To be studied, MAC address hiding enhancements

Riverstone Networks

Thanks!

igiangrossi@riverstonenet.com