

BGP Multihoming

ISP/IXP Workshops

Redundancy

One connection to internet means the network is dependent on:

Local router (configuration, software, hardware)

WAN media (physical failure, carrier failure)

Upstream Service Provider (configuration, software, hardware)

Reliability

Business critical applications demand continuous availability

Lack of redundancy implies lack of reliability implies loss of revenue

Supplier Diversity

Many businesses demand supplier diversity as a matter of course

Internet connection from two or more suppliers

With two or more diverse WAN paths

With two or more exit points

With two or more international connections

Two of everything

- Not really a reason, but oft quoted...
- Leverage:

Playing one ISP off against the other for:

Service Quality

Service Offerings

Availability

Summary:

Multihoming is easy to demand as requirement of any operation

But what does it really mean:

In real life?

For the network?

For the Internet?

And how do we do it?

Multihoming Definition

More than one link external to the local network

two or more links to the same ISP two or more links to different ISPs

Usually two external facing routers
 one router gives link and provider redundancy
 only

Multihoming

- The scenarios described here apply equally well to end sites being customers of ISPs and ISPs being customers of other ISPs
- Implementation detail may be different

end site → ISP

ISP controls config

ISP1 → ISP2

ISPs share config

AS Numbers

- An Autonomous System Number is required by BGP
- Obtained from upstream ISP or Regional Registry (RIR)

AfriNIC, APNIC, ARIN, LACNIC, RIPE NCC

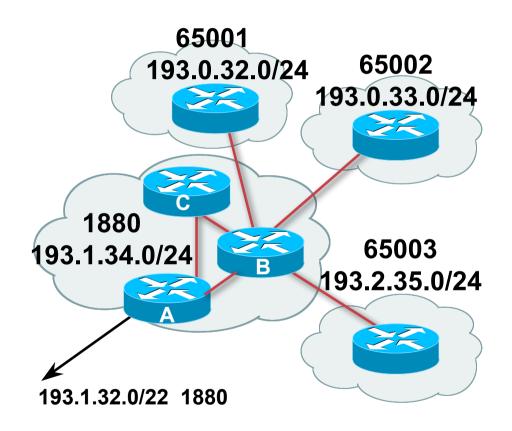
- Necessary when you have links to more than one ISP or an exchange point
- 16 bit integer, ranging from 1 to 65534

Zero and 65535 are reserved

64512 through 65534 are called Private ASNs

Private-AS – Application

Applications


An ISP with customers multihomed on their backbone (RFC2270)

-or-

A corporate network with several regions but connections to the Internet only in the core

-or-

Within a BGP Confederation

Private-AS – removal

 Private ASNs MUST be removed from all prefixes announced to the public Internet

Include configuration to remove private ASNs in the eBGP template

 As with RFC1918 address space, private ASNs are intended for internal use

They should not be leaked to the public Internet

Cisco IOS

neighbor x.x.x.x remove-private-AS

Configuring Policy

Assumptions:

prefix-lists are used throughout easier/better/faster than access-lists

Three BASIC Principles

prefix-lists to filter prefixes filter-lists to filter ASNs route-maps to apply policy

 Route-maps can be used for filtering, but this is more "advanced" configuration

Policy Tools

- Local preference outbound traffic flows
- Metric (MED)
 inbound traffic flows (local scope)
- AS-PATH prepend inbound traffic flows (Internet scope)
- Communities
 specific inter-provider peering

Originating Prefixes: Assumptions

- MUST announce assigned address block to Internet
- MAY also announce subprefixes reachability is not guaranteed
- Current RIR minimum allocation is /21
 - Several ISPs filter RIR blocks on this boundary
 - Several ISPs filter the rest of address space according to the IANA assignments
 - This activity is called "Net Police" by some

Originating Prefixes

Some ISPs publish their minimum allocation sizes per /8 address block

AfriNIC: www.afrinic.net/docs/policies/afpol-v4200407-000.htm

APNIC: www.apnic.net/db/min-alloc.html

ARIN: www.arin.net/reference/ip_blocks.html

LACNIC: lacnic.net/en/registro/index.html

RIPE NCC: www.ripe.net/ripe/docs/smallest-alloc-sizes.html

Note that AfriNIC only publishes its current minimum allocation size, not the allocation size for its address blocks

 IANA publishes the address space it has assigned to end-sites and allocated to the RIRs:

www.iana.org/assignments/ipv4-address-space

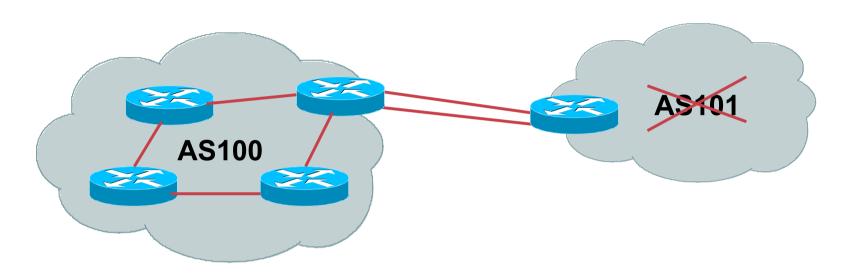
Several ISPs use this published information to filter prefixes on:

What should be routed (from IANA)

The minimum allocation size from the RIRs

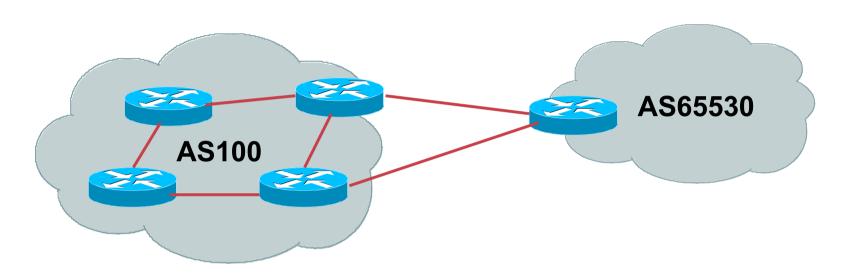
"Net Police" prefix list issues

- meant to "punish" ISPs who pollute the routing table with specifics rather than announcing aggregates
- impacts legitimate multihoming especially at the Internet's edge
- impacts regions where domestic backbone is unavailable or costs \$\$\$ compared with international bandwidth
- hard to maintain requires updating when RIRs start allocating from new address blocks
- don't do it unless consequences understood and you are prepared to keep the list current

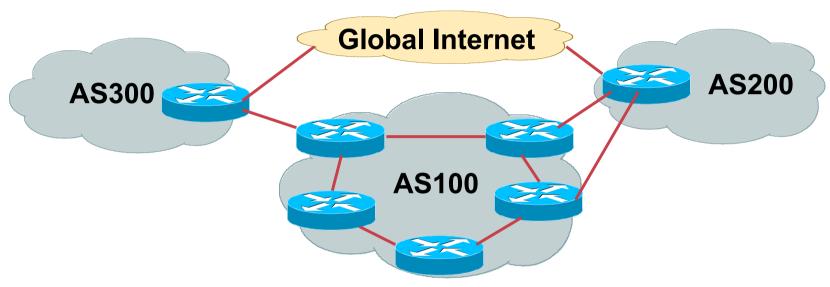


Multihoming Options

Multihoming Scenarios

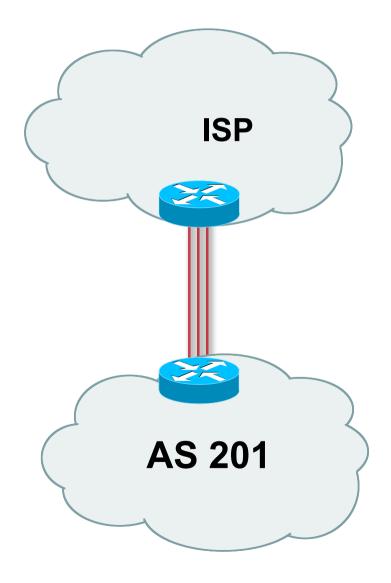

- Stub network
- Multi-homed stub network
- Multi-homed network
- Configuration Options

Stub Network


- No need for BGP
- Point static default to upstream ISP
- Upstream ISP advertises stub network
- Policy confined within upstream ISP's policy

Multi-homed Stub Network

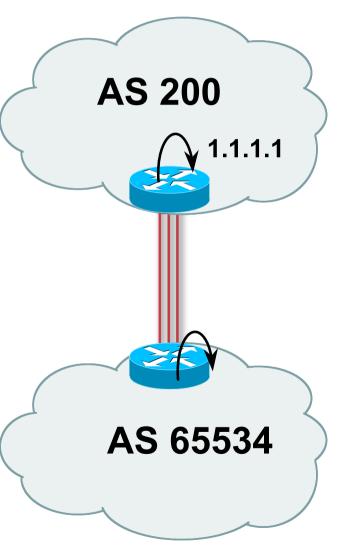
- Use BGP (not IGP or static) to loadshare
- Use private AS (ASN > 64511)
- Upstream ISP advertises stub network
- Policy confined within upstream ISP's policy


Multi-Homed Network

Many situations possible
 multiple sessions to same ISP
 secondary for backup only
 load-share between primary and secondary
 selectively use different ISPs

Several options

 ebgp multihop
 bgp multipath
 cef loadsharing
 bgp attribute
 manipulation



Example One

Use eBGP multihop
 eBGP to loopback addresses
 eBGP prefixes learned with loopback address as next hop

Cisco IOS

```
router bgp 65534
neighbor 1.1.1.1 remote-as 200
neighbor 1.1.1.1 ebgp-multihop 2
!
ip route 1.1.1.1 255.255.255.255 serial 1/0
ip route 1.1.1.1 255.255.255.255 serial 1/1
ip route 1.1.1.1 255.255.255.255 serial 1/2
```

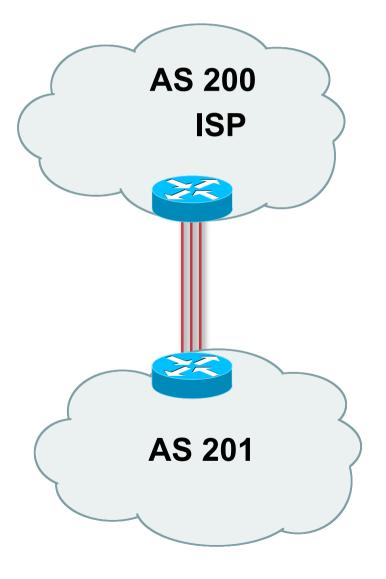

Example One

Try and avoid use of ebgp-multihop unless:

It's absolutely necessary -or-

Loadsharing across multiple links

Many ISPs discourage its use, for example:

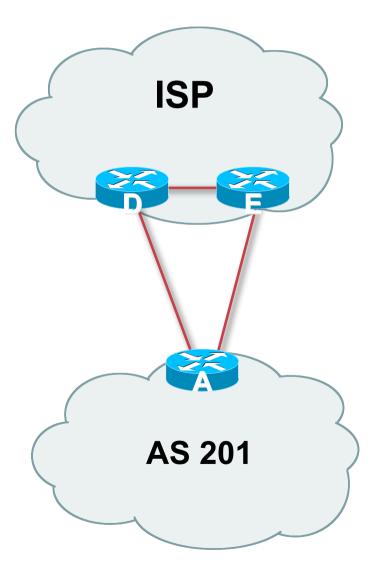

We will run eBGP multihop, but do not support it as a standard offering because customers generally have a hard time managing it due to:

- routing loops
- failure to realise that BGP session stability problems are usually due connectivity problems between their CPE and their BGP speaker

Multiple Sessions to an ISP bgp multi path

- Three BGP sessions required
- limit of 6 parallel paths

```
router bgp 201
neighbor 1.1.2.1 remote-as 200
neighbor 1.1.2.5 remote-as 200
neighbor 1.1.2.9 remote-as 200
maximum-paths 3
```

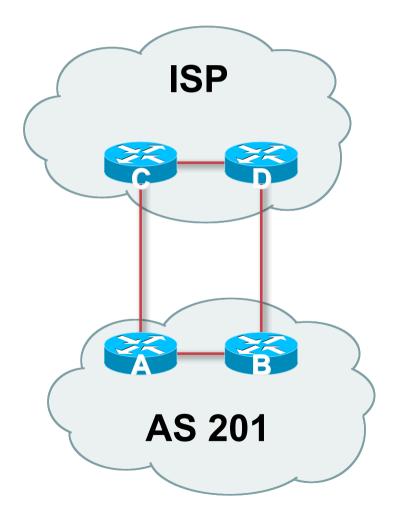


 Use eBGP multi-path to install multiple paths in IP table

router bgp 201
maximum-path <1-6>

 Load share over the alternate paths

per destination loadsharing


- Simplest scheme is to use defaults
- Learn/advertise prefixes for better control
- Planning and some work required to achieve loadsharing

Point default towards one ISP

Learn selected prefixes from second ISP

Modify the number of prefixes learnt to achieve acceptable load sharing

No magic solution

Preparing the network

Before we begin...

Preparing the Network

- We will deploy BGP across the network before we try and multihome
- BGP will be used therefore an ASN is required
- If multihoming to different ISPs, public ASN needed:

Either go to upstream ISP who is a registry member, or Apply to the RIR yourself for a one off assignment, or Ask an ISP who is a registry member, or

Join the RIR and get your own IP address allocation too (this option strongly recommended)!

Preparing the Network Initial Assumptions

 The network is not running any BGP at the moment

single statically routed connection to upstream ISP

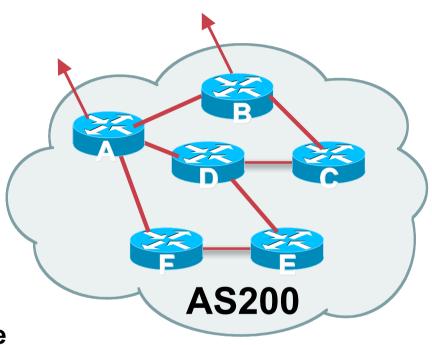
 The network is not running any IGP at all Static default and routes through the network to do "routing"

Preparing the Network First Step: IGP

- Decide on IGP: OSPF or ISIS ©
- Assign loopback interfaces and /32 addresses to each router which will run the IGP

Loopback is OSPF and BGP router id Used for iBGP and route origination

Deploy IGP (e.g. OSPF)


IGP can be deployed with NO IMPACT on the existing static routing

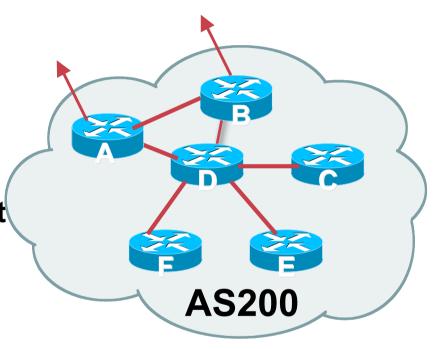
OSPF distance is 110, static distance is 1

Smallest distance wins

Preparing the Network Second Step: iBGP

- Second step is to configure the local network to use iBGP
- iBGP can run on
 all routers, or
 a subset of routers, or
 just on the upstream edge
- iBGP must run on all routers which are in the transit path between external connections

Preparing the Network Second Step: iBGP (Transit Path)


 iBGP must run on all routers which are in the transit path between external connections

 Routers C, E and F are not in the transit path

Static routes or IGP will suffice

 Router D is in the transit path

Will need to be in iBGP mesh, otherwise routing loops will result

Preparing the Network Layers

Typical SP networks have three layers:

Core – the backbone, usually the transit path

Distribution – the middle, PoP aggregation layer

Aggregation – the edge, the devices connecting customers

Preparing the Network Aggregation Layer

iBGP is optional

Many ISPs run iBGP here, either partial routing (more common) or full routing (less common)

Full routing is not needed unless customers want full table

Partial routing is cheaper/easier, might usually consist of internal prefixes and, optionally, external prefixes to aid external load balancing

Communities and peer-groups make this administratively easy

Many aggregation devices can't run iBGP

Static routes from distribution devices for address pools IGP for best exit

Preparing the Network Distribution Layer

Usually runs iBGP

Partial or full routing (as with aggregation layer)

But does not have to run iBGP

IGP is then used to carry customer prefixes (does not scale)

IGP is used to determine nearest exit

Networks which plan to grow large should deploy iBGP from day one

Migration at a later date is extra work

No extra overhead in deploying iBGP, indeed IGP benefits

Preparing the Network Core Layer

- Core of network is usually the transit path
- iBGP necessary between core devices
 Full routes or partial routes:
 - Transit ISPs carry full routes in core Edge ISPs carry partial routes only
- Core layer includes AS border routers

Preparing the Network iBGP Implementation

Decide on:

Best iBGP policy (full vs partial route mix) iBGP scaling technique (communities, route-reflectors, peergroups)

Then deploy iBGP:

Step 1: Introduce iBGP (making sure that BGP distance is greater than IGP distance)

Step 2: Install customer prefixes into iBGP

Step 3: Make iBGP distance less than IGP

Check! Does the network still work?

Step 4: Withdraw customer prefixes from the IGP/static routes

Step 5: Restore BGP distance to greater than IGP distance

Step 6: Deployment of eBGP follows

Preparing the Network Configuration – Before BGP

```
interface loopback 0
 ip address 121.10.255.1 255.255.255.255
                                                Add loopback
                                                configuration if not
interface serial 0/0
                                                already there
 ip address 121.10.0.1 255.255.255.252
interface serial 0/1
 ip address 121.10.0.5 255.255.255.252
router ospf 100
network 121.10.255.1 0.0.0.0 area 0
passive-interface loopback 0
redistribute connected subnets
                                    ! Point-to-point links
redistribute static subnets
                                    ! Customer networks
ip route 121.10.24.0 255.255.252.0 serial 0/0
ip route 121.10.28.0 255.255.254.0 serial 0/1
```

Preparing the Network Configuration – Steps 1 & 2

```
! interface and OSPF configuration unchanged
router bgp 100
 redistribute connected subnets route-map point-to-point
 neighbor 121.10.1.2 remote-as 100
 neighbor 121.10.1.2 next-hop-self
                                               Add BGP and related
                                               configuration in red
 network 121.10.24.0 mask 255.255.252.0
 network 121.10.28.0 mask 255.255.254.0
 distance bgp 200 200 200
ip route 121.10.24.0 255.255.252.0 serial 0/0
ip route 121.10.28.0 255.255.254.0 serial 0/1
route-map point-to-point permit 5
 match ip address 1
 set community 100:1
```

Preparing the Network Configuration – Steps 3 & 4

```
! interface configuration unchanged
                                           OSPF redistribution
router ospf 100
                                           has been removed
network 121.10.255.1 0.0.0.0 area 0
passive-interface loopback 0
router bgp 100
redistribute connected route-map point-to-point
neighbor 121.10.1.2 remote-as 100
neighbor 121.10.1.2 next-hop-self
network 121.10.24.0 mask 255.255.252.0
network 121.10.28.0 mask 255.255.254.0
distance bgp 20 20 20 ! reduced BGP distance
ip route 121.10.24.0 255.255.252.0 serial 0/0
ip route 121.10.28.0 255.255.254.0 serial 0/1
© 2005, Cisco Systems, Inc. All rights reserved.
```

Preparing the Network Configuration – Step 5

© 2005. Cisco Systems, Inc. All rights reserved.

```
! interface configuration unchanged
router ospf 100
network 121.10.255.1 0.0.0.0 area 0
passive-interface loopback 0
router bgp 100
 redistribute connected route-map point-to-point
neighbor 121.10.1.2 remote-as 100
neighbor 121.10.1.2 next-hop-self
network 121.10.24.0 mask 255.255.252.0
network 121.10.28.0 mask 255.255.254.0
distance bgp 200 200 200 ! BGP distance restored
ip route 121.10.24.0 255.255.252.0 serial 0/0
ip route 121.10.28.0 255.255.254.0 serial 0/1
```

Preparing the Network Configuration Summary

- Customer networks are now in iBGP iBGP deployed over the backbone
 Full or Partial or Upstream Edge only
- BGP distance is greater than any IGP
- Now ready to deploy eBGP

Basic Multihoming

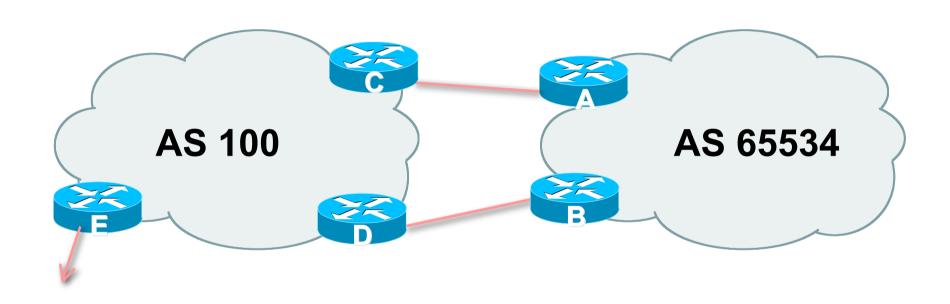
Let's learn to walk before we try running...

Basic Multihoming

- No frills multihoming
- Will look at two cases:
 - Multihoming with the same ISP Multihoming to different ISPs
- Will keep the examples easy

Understanding easy concepts will make the more complex scenarios easier to comprehend

Basic Multihoming


- This type is most commonplace at the edge of the Internet
 - Networks here are usually concerned with inbound traffic flows
 - Outbound traffic flows being "nearest exit" is usually sufficient
- Can apply to the leaf ISP as well as Enterprise networks

Basic – No Redundancy

- Can use BGP for this to aid loadsharing use a private AS (ASN > 64511)
- upstream ISP proxy aggregates

in other words, announces only your address block to the Internet (as would be done if you had one statically routed connection)

AS100 proxy aggregates for AS 65534

 Split /19 and announce as two /20s, one on each link

basic inbound loadsharing

 Example has no practical use, but demonstrates the principles

Router A Configuration

```
router bgp 65534
network 121.10.0.0 mask 255.255.240.0
network 121.10.16.0 mask 255.255.240.0
neighbor 122.102.10.2 remote-as 100
neighbor 122.102.10.2 prefix-list routerC out
neighbor 122.102.10.2 prefix-list default in
ip prefix-list default permit 0.0.0.0/0
ip prefix-list routerC permit 121.10.0.0/20
ip route 121.10.0.0 255.255.240.0 null0
ip route 121.10.16.0 255.255.240.0 null0
```

Router B Configuration

```
router bgp 65534
network 121.10.0.0 mask 255.255.240.0
network 121.10.16.0 mask 255.255.240.0
neighbor 122.102.10.6 remote-as 100
neighbor 122.102.10.6 prefix-list routerD out
neighbor 122.102.10.6 prefix-list default in
ip prefix-list default permit 0.0.0.0/0
ip prefix-list routerD permit 121.10.16.0/20
ip route 121.10.0.0 255.255.240.0 null0
ip route 121.10.16.0 255.255.240.0 null0
```

Router C Configuration

```
router bgp 100
neighbor 122.102.10.1 remote-as 65534
neighbor 122.102.10.1 default-originate
neighbor 122.102.10.1 prefix-list Customer in
neighbor 122.102.10.1 prefix-list default out
!
ip prefix-list Customer permit 121.10.0.0/20
ip prefix-list default permit 0.0.0.0/0
```

Router D Configuration

```
router bgp 100
neighbor 122.102.10.5 remote-as 65534
neighbor 122.102.10.5 default-originate
neighbor 122.102.10.5 prefix-list Customer in
neighbor 122.102.10.5 prefix-list default out
!
ip prefix-list Customer permit 121.10.16.0/20
ip prefix-list default permit 0.0.0.0/0
```

Router E is AS100 border router

removes prefixes in the private AS from external announcements

implements the proxy aggregation for the customer prefixes

Router E Configuration

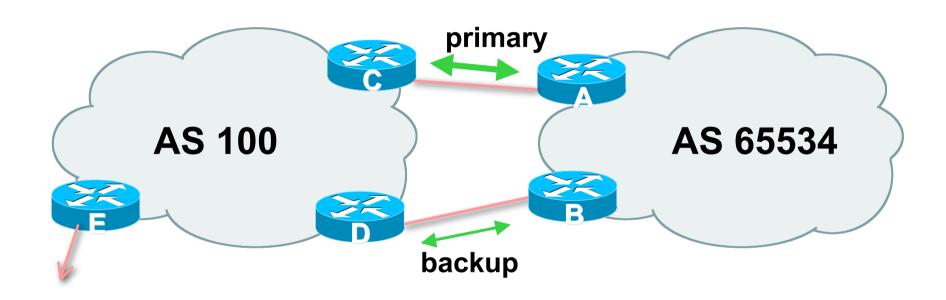
```
router bgp 100
network 121.10.0.0 mask 255.255.224.0
neighbor 122.102.10.17 remote-as 110
neighbor 122.102.10.17 filter-list 1 out
!
ip route 121.10.0.0 255.255.224.0 null0
!
ip as-path access-list 1 deny ^65534$
ip as-path access-list 1 permit ^$
```

Private AS still visible inside AS100

Big Problem:

no backup in case of link failure

- /19 address block not announced
- AS Path filtering "awkward" easier to use bgp command


neighbor x.x.x.x remove-private-AS

One link primary, the other link backup only

 Applies when end-site has bought a large primary WAN link to their upstream a small secondary WAN link as the backup

For example, primary path might be an E1, backup might be 64kbps

 AS100 removes private AS and any customer subprefixes from Internet announcement

Announce /19 aggregate on each link

primary link:

Outbound – announce /19 unaltered

Inbound – receive default route

backup link:

Outbound – announce /19 with increased metric

Inbound – received default, and reduce local preference

 When one link fails, the announcement of the /19 aggregate via the other link ensures continued connectivity

Router A Configuration

```
router bgp 65534

network 121.10.0.0 mask 255.255.224.0

neighbor 122.102.10.2 remote-as 100

neighbor 122.102.10.2 description RouterC

neighbor 122.102.10.2 prefix-list aggregate out
neighbor 122.102.10.2 prefix-list default in
!

ip prefix-list aggregate permit 121.10.0.0/19
ip prefix-list default permit 0.0.0.0/0
!
```

Router B Configuration

```
router bgp 65534

network 121.10.0.0 mask 255.255.224.0

neighbor 122.102.10.6 remote-as 100

neighbor 122.102.10.6 description RouterD

neighbor 122.102.10.6 prefix-list aggregate out
neighbor 122.102.10.6 route-map routerD-out out
neighbor 122.102.10.6 prefix-list default in
neighbor 122.102.10.6 route-map routerD-in in
!
..next slide
```

```
ip prefix-list aggregate permit 121.10.0.0/19
ip prefix-list default permit 0.0.0.0/0
route-map routerD-out permit 10
 match ip address prefix-list aggregate
 set metric 10
route-map routerD-out permit 20
route-map routerD-in permit 10
 set local-preference 90
```

Router C Configuration (main link)

```
router bgp 100
neighbor 122.102.10.1 remote-as 65534
neighbor 122.102.10.1 default-originate
neighbor 122.102.10.1 prefix-list Customer in
neighbor 122.102.10.1 prefix-list default out
!
ip prefix-list Customer permit 121.10.0.0/19
ip prefix-list default permit 0.0.0.0/0
```

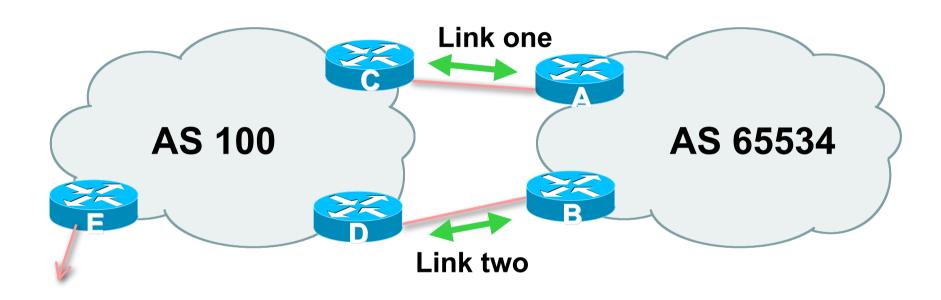
Router D Configuration (backup link)

```
router bgp 100
neighbor 122.102.10.5 remote-as 65534
neighbor 122.102.10.5 default-originate
neighbor 122.102.10.5 prefix-list Customer in
neighbor 122.102.10.5 prefix-list default out
!
ip prefix-list Customer permit 121.10.0.0/19
ip prefix-list default permit 0.0.0.0/0
```

Router E Configuration

```
router bgp 100
neighbor 122.102.10.17 remote-as 110
neighbor 122.102.10.17 remove-private-AS
neighbor 122.102.10.17 prefix-list Customer out
!
ip prefix-list Customer permit 121.10.0.0/19
```

- Router E removes the private AS and customer's subprefixes from external announcements
- Private AS still visible inside AS100



With Redundancy and Loadsharing

Loadsharing to the same ISP

- More common case
- End sites tend not to buy circuits and leave them idle, only used for backup as in previous example
- This example assumes equal capacity circuits
 Unequal capacity circuits requires more refinement see later

Loadsharing to the same ISP

 Border router E in AS100 removes private AS and any customer subprefixes from Internet announcement

Loadsharing to the same ISP (with redundancy)

- Announce /19 aggregate on each link
- Split /19 and announce as two /20s, one on each link basic inbound loadsharing assumes equal circuit capacity and even spread of traffic across address block
- Vary the split until "perfect" loadsharing achieved
- Accept the default from upstream
 basic outbound loadsharing by nearest exit
 okay in first approx as most ISP and end-site traffic is inbound

Loadsharing to the same ISP (with redundancy)

Router A Configuration

```
router bgp 65534
network 121.10.0.0 mask 255.255.224.0
network 121.10.0.0 mask 255.255.240.0
neighbor 122.102.10.2 remote-as 100
neighbor 122.102.10.2 prefix-list routerC out
neighbor 122.102.10.2 prefix-list default in
ip prefix-list default permit 0.0.0.0/0
ip prefix-list routerC permit 121.10.0.0/20
ip prefix-list routerC permit 121.10.0.0/19
ip route 121.10.0.0 255.255.240.0 null0
ip route 121.10.0.0 255.255.224.0 null0
```

Router B Configuration

```
router bgp 65534
network 121.10.0.0 mask 255.255.224.0
network 121.10.16.0 mask 255.255.240.0
neighbor 122.102.10.6 remote-as 100
neighbor 122.102.10.6 prefix-list routerD out
neighbor 122.102.10.6 prefix-list default in
ip prefix-list default permit 0.0.0.0/0
ip prefix-list routerD permit 121.10.16.0/20
ip prefix-list routerD permit 121.10.0.0/19
ip route 121.10.16.0 255.255.240.0 null0
ip route 121.10.0.0 255.255.224.0 null0
```

Router C Configuration

```
router bgp 100
neighbor 122.102.10.1 remote-as 65534
neighbor 122.102.10.1 default-originate
neighbor 122.102.10.1 prefix-list Customer in
neighbor 122.102.10.1 prefix-list default out
!
ip prefix-list Customer permit 121.10.0.0/19 le 20
ip prefix-list default permit 0.0.0.0/0
```

- Router C only allows in /19 and /20 prefixes from customer block
- Router D configuration is identical

Router E Configuration

```
router bgp 100
neighbor 122.102.10.17 remote-as 110
neighbor 122.102.10.17 remove-private-AS
neighbor 122.102.10.17 prefix-list Customer out
!
ip prefix-list Customer permit 121.10.0.0/19
```

Private AS still visible inside AS100

Default route for outbound traffic?

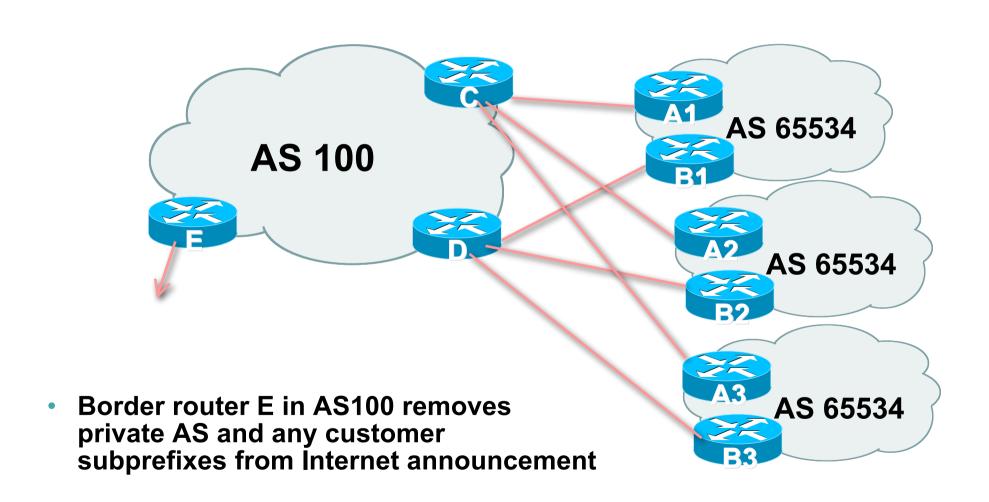
Use default-information originate for the IGP and rely on IGP metrics for nearest exit

e.g. on router A:

router ospf 65534 default-information originate metric 2 metric-type 1

- Loadsharing configuration is only on customer router
- Upstream ISP has to

remove customer subprefixes from external announcements


remove private AS from external announcements

Could also use BGP communities

Two links to the same ISP

- Unusual for an ISP just to have one dualhomed customer Valid/valuable service offering for an ISP with multiple PoPs Better for ISP than having customer multihome with another provider!
- Look at scaling the configuration
 - ⇒ Simplifying the configuration
 - Using templates, peer-groups, etc
 - **Every customer has the same configuration (basically)**

- Customer announcements as per previous example
- Use the same private AS for each customer documented in RFC2270 address space is not overlapping each customer hears default only
- Router An and Bn configuration same as Router A and B previously

Router A1 Configuration

```
router bgp 65534
network 121.10.0.0 mask 255.255.224.0
network 121.10.0.0 mask 255.255.240.0
neighbor 122.102.10.2 remote-as 100
neighbor 122.102.10.2 prefix-list routerC out
neighbor 122.102.10.2 prefix-list default in
ip prefix-list default permit 0.0.0.0/0
ip prefix-list routerC permit 121.10.0.0/20
ip prefix-list routerC permit 121.10.0.0/19
ip route 121.10.0.0 255.255.240.0 null0
ip route 121.10.0.0 255.255.224.0 null0
```

Router B1 Configuration

```
router bgp 65534
network 121.10.0.0 mask 255.255.224.0
network 121.10.16.0 mask 255.255.240.0
neighbor 122.102.10.6 remote-as 100
neighbor 122.102.10.6 prefix-list routerD out
neighbor 122.102.10.6 prefix-list default in
ip prefix-list default permit 0.0.0.0/0
ip prefix-list routerD permit 121.10.16.0/20
ip prefix-list routerD permit 121.10.0.0/19
ip route 121.10.0.0 255.255.224.0 null0
ip route 121.10.16.0 255.255.240.0 null0
```

Router C Configuration

```
router bap 100
neighbor bgp-customers peer-group
neighbor bgp-customers remote-as 65534
neighbor bgp-customers default-originate
neighbor bgp-customers prefix-list default out
neighbor 122.102.10.1 peer-group bgp-customers
neighbor 122.102.10.1 description Customer One
neighbor 122.102.10.1 prefix-list Customer1 in
neighbor 122.102.10.9 peer-group bgp-customers
neighbor 122.102.10.9 description Customer Two
neighbor 122.102.10.9 prefix-list Customer2 in
```

```
neighbor 122.102.10.17 peer-group bgp-customers
neighbor 122.102.10.17 description Customer Three
neighbor 122.102.10.17 prefix-list Customer3 in
!
ip prefix-list Customer1 permit 121.10.0.0/19 le 20
ip prefix-list Customer2 permit 121.16.64.0/19 le 20
ip prefix-list Customer3 permit 121.14.192.0/19 le 20
ip prefix-list default permit 0.0.0.0/0
```

 Router C only allows in /19 and /20 prefixes from customer block

Router D Configuration

```
router bgp 100
neighbor bgp-customers peer-group
neighbor bgp-customers remote-as 65534
neighbor bgp-customers default-originate
neighbor bgp-customers prefix-list default out
neighbor 122.102.10.5 peer-group bgp-customers
neighbor 122.102.10.5 description Customer One
neighbor 122.102.10.5 prefix-list Customer1 in
neighbor 122.102.10.13 peer-group bgp-customers
neighbor 122.102.10.13 description Customer Two
neighbor 122.102.10.13 prefix-list Customer2 in
```

```
neighbor 122.102.10.21 peer-group bgp-customers
neighbor 122.102.10.21 description Customer Three
neighbor 122.102.10.21 prefix-list Customer3 in
!
ip prefix-list Customer1 permit 121.10.0.0/19 le 20
ip prefix-list Customer2 permit 121.16.64.0/19 le 20
ip prefix-list Customer3 permit 121.14.192.0/19 le 20
ip prefix-list default permit 0.0.0.0/0
```

 Router D only allows in /19 and /20 prefixes from customer block

Router E Configuration

assumes customer address space is not part of upstream's address block

```
router bgp 100
neighbor 122.102.10.17 remote-as 110
neighbor 122.102.10.17 remove-private-AS
neighbor 122.102.10.17 prefix-list Customers out
!
ip prefix-list Customers permit 121.10.0.0/19
ip prefix-list Customers permit 121.16.64.0/19
ip prefix-list Customers permit 121.14.192.0/19
```

Private AS still visible inside AS100

 If customers' prefixes come from ISP's address block

do NOT announce them to the Internet

announce ISP aggregate only

Router E configuration:

```
router bgp 100
neighbor 122.102.10.17 remote-as 110
neighbor 122.102.10.17 prefix-list my-aggregate out
!
ip prefix-list my-aggregate permit 121.8.0.0/13
```

Multihoming Summary

- Use private AS for multihoming to upstream
- Leak subprefixes to upstream only to aid loadsharing
- Upstream Router E configuration is uniform across all scenarios

Basic Multihoming

Multihoming to Different ISPs

Two links to different ISPs

Use a Public AS

Or use private AS if agreed with the other ISP

But some people don't like the "inconsistent-AS" which results from use of a private-AS

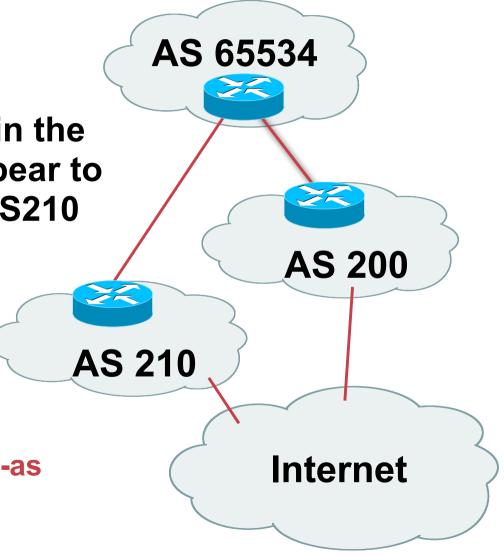
Address space comes from

both upstreams or

Regional Internet Registry

Configuration concepts very similar

Inconsistent-AS?

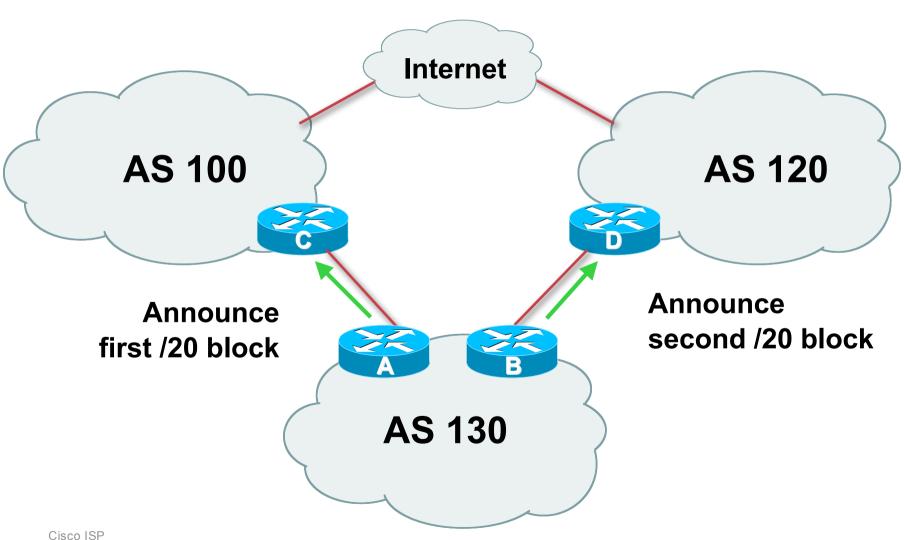

 Viewing the prefixes originated by AS65534 in the Internet shows they appear to be originated by both AS210 and AS200

This is NOT bad

Nor is it illegal

IOS command is

show ip bgp inconsistent-as



Two links to different ISPs

Basic – No Redundancy

- Example for PI space
 - ISP network, or large enterprise site
- Split /19 and announce as two /20s, one on each link
 - basic inbound loadsharing

Router A Configuration

```
router bgp 130
network 121.10.0.0 mask 255.255.240.0
neighbor 122.102.10.1 remote-as 100
neighbor 122.102.10.1 prefix-list routerC out
neighbor 122.102.10.1 prefix-list default in
!
ip prefix-list default permit 0.0.0.0/0
ip prefix-list routerC permit 121.10.0.0/20
```

Router B Configuration

```
router bgp 130
network 121.10.16.0 mask 255.255.240.0
neighbor 120.1.5.1 remote-as 120
neighbor 120.1.5.1 prefix-list routerD out
neighbor 120.1.5.1 prefix-list default in
!
ip prefix-list default permit 0.0.0.0/0
ip prefix-list routerD permit 121.10.16.0/20
```

Router C Configuration

```
router bgp 100
neighbor 121.10.1.1 remote-as 130
neighbor 121.10.1.1 default-originate
neighbor 121.10.1.1 prefix-list AS130cust in
neighbor 121.10.1.1 prefix-list default-out out
!
```

- Router C only announces default to AS 130
- Router C only accepts AS130's prefix block

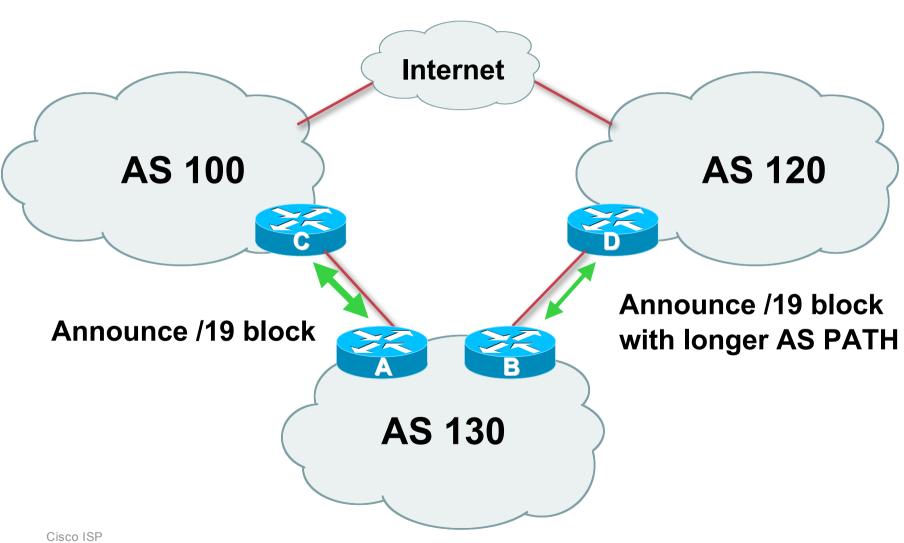
Router D Configuration

```
router bgp 120
neighbor 120.1.5.1 remote-as 130
neighbor 120.1.5.1 default-originate
neighbor 120.1.5.1 prefix-list AS130cust in
neighbor 120.1.5.1 prefix-list default-out out
!
```

- Router D only announces default to AS 130
- Router D only accepts AS130's prefix block

Big Problem:

no backup in case of link failure


/19 address block not announced

Two links to different ISPs

One link primary, the other link backup only

- Announce /19 aggregate on each link
 primary link makes standard announcement
 backup link lengthens the AS PATH by using AS
 PATH prepend
- When one link fails, the announcement of the /19 aggregate via the other link ensures continued connectivity

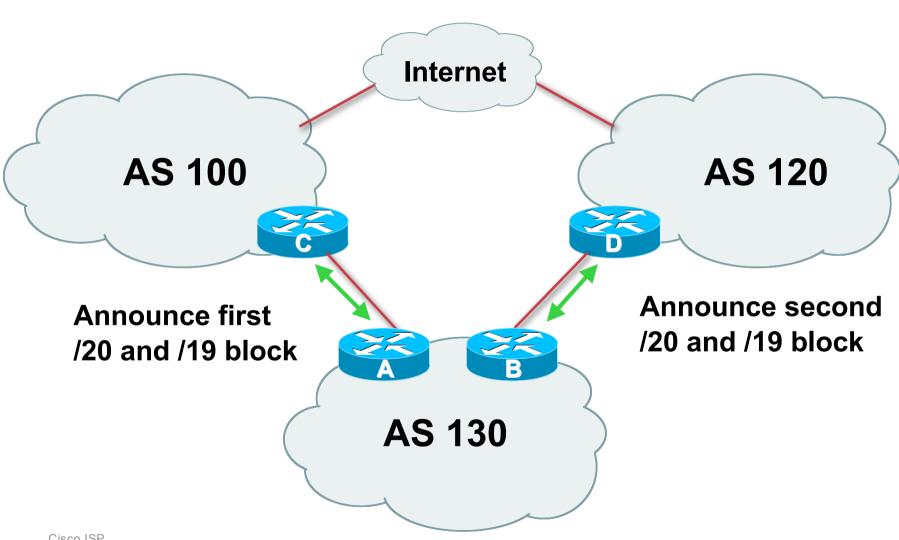
Router A Configuration

```
router bgp 130
network 121.10.0.0 mask 255.255.224.0
neighbor 122.102.10.1 remote-as 100
neighbor 122.102.10.1 prefix-list aggregate out
neighbor 122.102.10.1 prefix-list default in
!
ip prefix-list aggregate permit 121.10.0.0/19
ip prefix-list default permit 0.0.0.0/0
```

Router B Configuration

```
router bgp 130
network 121.10.0.0 mask 255.255.224.0
neighbor 120.1.5.1 remote-as 120
neighbor 120.1.5.1 prefix-list aggregate out
neighbor 120.1.5.1 route-map routerD-out out
neighbor 120.1.5.1 prefix-list default in
neighbor 120.1.5.1 route-map routerD-in in
ip prefix-list aggregate permit 121.10.0.0/19
ip prefix-list default permit 0.0.0.0/0
ļ
route-map routerD-out permit 10
set as-path prepend 130 130 130
ļ
route-map routerD-in permit 10
 set local-preference 80
```

- Not a common situation as most sites tend to prefer using whatever capacity they have
- But it shows the basic concepts of using local-prefs and AS-path prepends for engineering traffic in the chosen direction


Two links to different ISPs

With Redundancy

- Announce /19 aggregate on each link
- Split /19 and announce as two /20s, one on each link

basic inbound loadsharing

 When one link fails, the announcement of the /19 aggregate via the other ISP ensures continued connectivity

Router A Configuration

```
router bgp 130
network 121.10.0.0 mask 255.255.224.0
network 121.10.0.0 mask 255.255.240.0
neighbor 122.102.10.1 remote-as 100
neighbor 122.102.10.1 prefix-list firstblock out
neighbor 122.102.10.1 prefix-list default in
ip prefix-list default permit 0.0.0.0/0
ip prefix-list firstblock permit 121.10.0.0/20
ip prefix-list firstblock permit 121.10.0.0/19
```

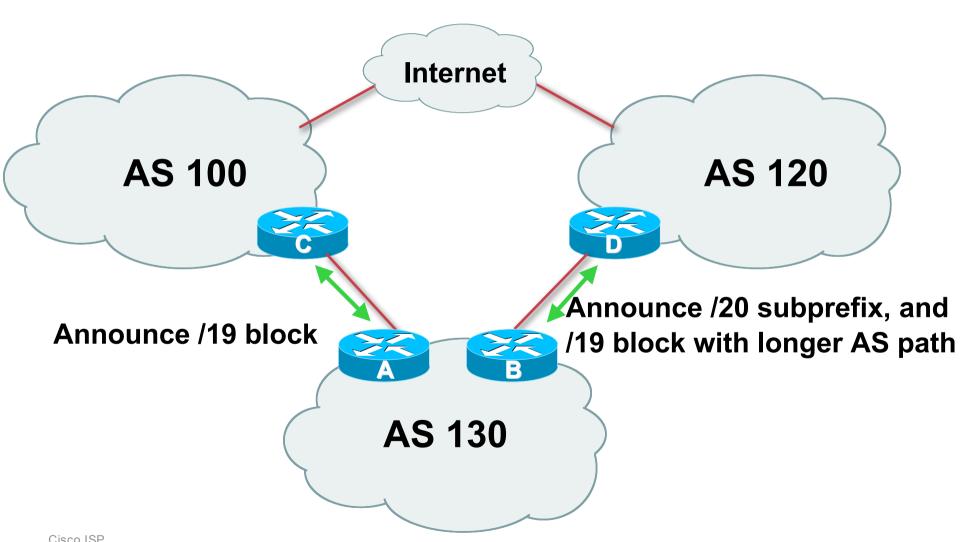
Router B Configuration

```
router bap 130
network 121.10.0.0 mask 255.255.224.0
network 121.10.16.0 mask 255.255.240.0
neighbor 120.1.5.1 remote-as 120
neighbor 120.1.5.1 prefix-list secondblock out
neighbor 120.1.5.1 prefix-list default in
ip prefix-list default permit 0.0.0.0/0
ip prefix-list secondblock permit 121.10.16.0/20
ip prefix-list secondblock permit 121.10.0.0/19
```

Two links to different ISPs (with loadsharing)

- Loadsharing in this case is very basic
- But shows the first steps in designing a load sharing solution

Start with a simple concept


And build on it...!

Two links to different ISPs

More Controlled Loadsharing

- Announce /19 aggregate on each link
 - On first link, announce /19 as normal
 - On second link, announce /19 with longer AS PATH, and announce one /20 subprefix
 - controls loadsharing between upstreams and the Internet
- Vary the subprefix size and AS PATH length until "perfect" loadsharing achieved
- Still require redundancy!

Router A Configuration

```
router bgp 130
network 121.10.0.0 mask 255.255.224.0
neighbor 122.102.10.1 remote-as 100
neighbor 122.102.10.1 prefix-list default in
neighbor 122.102.10.1 prefix-list aggregate out
!
ip prefix-list aggregate permit 121.10.0.0/19
```

Router B Configuration

```
router bgp 130
 network 121.10.0.0 mask 255.255.224.0
 network 121.10.16.0 mask 255.255.240.0
 neighbor 120.1.5.1 remote-as 120
 neighbor 120.1.5.1 prefix-list default in
 neighbor 120.1.5.1 prefix-list subblocks out
 neighbor 120.1.5.1 route-map routerD out
route-map routerD permit 10
 match ip address prefix-list aggregate
 set as-path prepend 130 130
route-map routerD permit 20
1
ip prefix-list subblocks permit 121.10.0.0/19 le 20
ip prefix-list aggregate permit 121.10.0.0/19
```

- This example is more commonplace
- Shows how ISPs and end-sites subdivide address space frugally, as well as use the AS-PATH prepend concept to optimise the load sharing between different ISPs
- Notice that the /19 aggregate block is ALWAYS announced

BGP Multihoming

ISP/IXP Workshops