
Origin

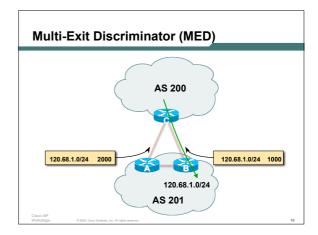
- · Conveys the origin of the prefix
- · "Historical" attribute
- · Influences best path selection
- Three values: IGP, EGP, incomplete
 IGP generated by BGP network statement
 EGP generated by EGP
 incomplete redistributed from another routing protocol

Aggregator

- · Useful for debugging purposes
- Conveys the IP address of the router/BGP speaker generating the aggregate route
- · Does not influence path selection

sco ISP

Local Preference


- Local to an AS non-transitive
 local preference set to 100 when heard from neighbouring AS
- Used to influence BGP path selection determines best path for outbound traffic
- · Path with highest local preference wins

Isco ISP

Local Preference

Configuration of Router B:

```
router bgp 400
neighbor 120.5.1.1 remote-as 300
neighbor 120.5.1.1 route-map local-pref in !
route-map local-pref permit 10
match ip address prefix-list MATCH
set local-preference 800
!
ip prefix-list MATCH permit 160.10.0.0/16
```


Multi-Exit Discriminator

- Inter-AS non-transitive & optional attribute
- Used to convey the relative preference of entry points

determines best path for inbound traffic

- Comparable if paths are from same AS
 bgp always-compared-med allows comparisons of MEDs from different ASes
- · Path with lowest MED wins
- Absence of MED attribute implies MED value of zero (draft-ietf-idr-bgp4-26.txt)

Cisco ISP

2005, Cisco Systems, Inc. All rights reserved.

MED & IGP Metric

- IGP metric can be conveyed as MED
 - set metric-type internal in route-map

enables BGP to advertise a MED which corresponds to the IGP metric values $\,$

changes are monitored (and re-advertised if needed) every 600s

bgp dynamic-med-interval <secs>

Cisco ISF Workshop © 2005, Cisco Systems, Inc. All rights n

Multi-Exit Discriminator

Configuration of Router B:

```
router bgp 400
neighbor 120.5.1.1 remote-as 200
neighbor 120.5.1.1 route-map set-med out!
route-map set-med permit 10
match ip address prefix-list MATCH
set metric 1000
!
ip prefix-list MATCH permit 120.68.1.0/24
```

Cisco ISP

© 2005, Ciaco Systems, Inc. All rights reserve

Weight

- · Not really an attribute local to router
- · Highest weight wins
- Applied to all routes from a neighbour neighbor 120.5.7.1 weight 100
- Weight assigned to routes based on filter

neighbor 120.5.7.3 filter-list 3 weight 50

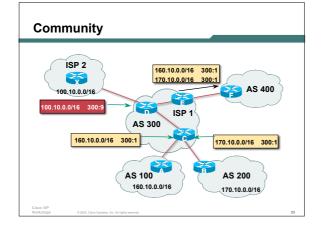
Cisco ISP

0.2005 Clara Systems Inc. All

Weight – Used to help Deploy RPF Link to use for most traffic from AS1 AS4, LOCAL_PREF 200 AS4, LOCAL_PREF 200 Backup link, but RPF still needs to work AS1 Best path to AS4 from AS1 is always via B due to local-pref But packets arriving at A from AS4 over the direct C to A link will pass the RPF check as that path has a priority due to the weight being set If weight was not set, best path back to AS4 would be via B, and the RPF check would fail

Community

- Communities are described in RFC1997
 - Transitive & Optional attribute
- · 32 bit integer


Represented as two 16 bit integers (RFC1997/8)

Common format is <local-ASN>:xx

0:0 to 0:65535 and 65535:0 to 65535:65535 are reserved

- Used to group destinations
 - Each destination could be member of multiple communities
- Very useful for applying policies within and between ASes

Cisco ISP Workshops © 2005, Cisco Systems, Inc. All rights reserved.

Well-Known Communities

· Several well known communities

www.iana.org/assignments/bgp-well-known-communities

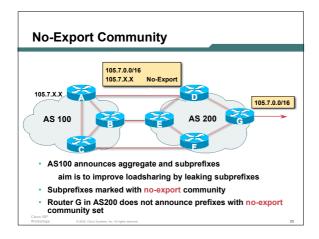
• no-export 65535:65281

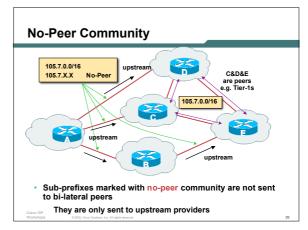
do not advertise to any eBGP peers

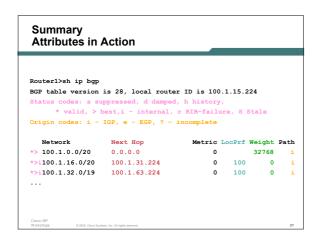
no-advertise 65535:65282

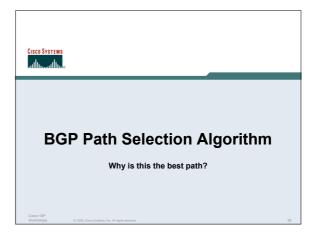
do not advertise to any BGP peer

peer


no-export-subconfed 65535:65283
 do not advertise outside local AS (only used with confederations)


no-peer


65535:65284


do not advertise to bi-lateral peers (RFC3765)

Cisco ISP Workshops © 2005, Cisco Systems, Inc. All rights reserved

BGP Path Selection Algorithm

- Do not consider path if no route to next hop
- Do not consider iBGP path if not synchronised
- Highest weight (local to router)
- Highest local preference (global within AS)
- · Prefer locally originated route
- · Shortest AS path

Circuita

BGP Path Selection Algorithm (continued)

- · Lowest origin code
 - IGP < EGP < incomplete
- Lowest Multi-Exit Discriminator (MED)

If bgp deterministic-med, order the paths before comparing

If bgp always-compare-med, then compare for all paths

otherwise MED only considered if paths are from the same AS (default)

Cisco ISP Workshops

© 2005, Cisco Systems, Inc. All rights reserved.

BGP Path Selection Algorithm (continued)

- · Prefer eBGP path over iBGP path
- · Path with lowest IGP metric to next-hop
- · For eBGP paths:

If multipath is enabled, install N parallel paths in forwarding table

If router-id is the same, go to next step

If router-id is not the same, select the oldest path

Cisco ISP

0.2005 Clara Systems Inc. All rights seasons

BGP Path Selection Algorithm (continued)

- Lowest router-id (originator-id for reflected routes)
- Shortest cluster-list

Client must be aware of Route Reflector attributes!

· Lowest neighbour address

Cisco ISP Workshops 0.2005 Claro Systems for All rin

Applying Policy with BGP

How to use the "tools"

Cisco ISP Workshops © 2005, Cisco Systems, Inc. All rights reserved.

Applying Policy with BGP

- Policy-based on AS path, community or the prefix
- · Rejecting/accepting selected routes
- · Set attributes to influence path selection
- Tools:

Prefix-list (filters prefixes)

Filter-list (filters ASes)

Route-maps and communities

Cisco ISP Workshops © 2005, Cisco Systems, Inc. All rights reserved

Policy Control - Prefix List

- Per neighbour prefix filter incremental configuration
- Inbound or Outbound
- Based upon network numbers (using familiar IPv4 address/mask format)
- Using access-lists for filtering prefixes was deprecated long ago

Strongly discouraged!

Cisco ISF

© 2005, Ciaco Systems, Inc. All rights reserved

Prefix-list Command

Syntax:

[no] ip prefix-list <list-name> [seq <seq-value>] permit|deny <network>/<len> [ge <ge-value>] [le <le-value>]

<network>/</en>: The prefix and its length

ge < ge-value>: "greater than or equal to"

le </e-value>: "less than or equal to"

Both "ge" and "le" are optional. Used to specify the range of the prefix length to be matched for prefixes that are more specific than <network>/<len>

Cisco ISF

© 2005, Cisco Systems, Inc. All rights reserv

Prefix Lists - Examples

Deny default route

ip prefix-list EG deny 0.0.0.0/0

• Permit the prefix 35.0.0.0/8

ip prefix-list EG permit 35.0.0.0/8

• Deny the prefix 172.16.0.0/12

ip prefix-list EG deny 172.16.0.0/12

• In 192/8 allow up to /24

ip prefix-list EG permit 192.0.0.0/8 le 24

This allows all prefix sizes in the 192.0.0.0/8 address block, apart from /25, /26, /27, /28, /29, /30, /31 and /32.

Cisco ISP

Prefix Lists - Examples

In 192/8 deny /25 and above

ip prefix-list EG deny 192.0.0.0/8 ge 25

This denies all prefix sizes /25, /26, /27, /28, /29, /30, /31 and /32 in the address block 192.0.0.0/8.

It has the same effect as the previous example

• In 193/8 permit prefixes between /12 and /20

ip prefix-list EG permit 193.0.0.0/8 ge 12 le 20

This denies all prefix sizes /8, /9, /10, /11, /21, /22, \dots and higher in the address block 193.0.0.0/8.

Permit all prefixes

ip prefix-list EG permit 0.0.0.0/0 le 32

0.0.0.0 matches all possible addresses, "0 le 32" matches all possible prefix lengths

Policy Control - Prefix List

Example Configuration

```
router bgp 100

network 105.7.0.0 mask 255.255.0.0

neighbor 102.10.1.1 remote-as 110

neighbor 102.10.1.1 prefix-list PEER-IN in

neighbor 102.10.1.1 prefix-list PEER-OUT out

!

ip prefix-list PEER-IN deny 218.10.0.0/16

ip prefix-list PEER-IN permit 0.0.0.0/0 le 32

ip prefix-list PEER-OUT permit 105.7.0.0/16

ip prefix-list PEER-OUT deny 0.0.0.0/0 le 32
```

Policy Control - Filter List

- · Filter routes based on AS path
- Inbound or Outbound
- Example Configuration:

```
router bgp 100
network 105.7.0.0 mask 255.255.0.0
neighbor 102.10.1.1 filter-list 5 out
neighbor 102.10.1.1 filter-list 6 in
!
ip as-path access-list 5 permit ^200$
ip as-path access-list 6 permit ^150$
```

Policy Control – Regular Expressions

- · Like Unix regular expressions
 - . Match one character
 - Match any number of preceding expression
 - + Match at least one of preceding expression
 - ^ Beginning of line
 - \$ End of line
 - Beginning, end, white-space, brace
 - | 0
 - () brackets to contain expression

Cisco ISP

© 2005, Cisco Systems, Inc. All rights reserve

Policy Control – Regular Expressions

Simple Examples

match anything match at least one character ^\$ match routes local to this AS 1800\$ originated by AS1800 ^1800_ received from AS1800 _1800_ via AS1800 _790_1800_ via AS1800 and AS790 multiple AS1800 in sequence (used to match AS-PATH prepends) _(1800_)+ _\(65530\)_ via AS65530 (confederations)

Cisco ISP Workshops © 2005, Cisco Systems, Inc. All rights reserved

Policy Control - Regular Expressions

Not so simple Examples

Match AS_PATH length of one ^[0-9]+\$ ^[0-9]+_[0-9]+\$ Match AS_PATH length of two ^[0-9]*_[0-9]+\$ Match AS_PATH length of one or two Match AS_PATH length of one or two (will also match zero) ^[0-9]*_[0-9]*\$ ^[0-9]+_[0-9]+_[0-9]+\$ Match AS_PATH length of three _(701|1800)_ Match anything which has gone through AS701 or AS1800 _1849(_.+_)12163\$ Match anything of origin AS12163 and passed through AS1849

Policy Control - Route Maps

- · A route-map is like a "programme" for IOS
- · Has "line" numbers, like programmes
- · Each line is a separate condition/action
- · Concept is basically:

if match then do expression and exit

if match then do $\mathit{expression}$ and exit

else etc

Cisco ISP Workshops

Route Maps - Caveats

- Lines can have multiple set statements but only one match statement
- Line with only a set statement all prefixes are matched and set any following lines are ignored
- Line with a match/set statement and no following lines

only prefixes matching go through the rest are dropped

Cisco ISP Workshops © 2005, Ciaco Systems, Inc. All rights reserved

Route Maps - Caveats

Example

omitting the third line below means that prefixes not matching list-one or list-two are dropped

```
route-map sample permit 10
match ip address prefix-list list-one
set local-preference 120
!
route-map sample permit 20
match ip address prefix-list list-two
set local-preference 80
!
route-map sample permit 30 ! Don't forget this
```

Policy Control – Route Maps

• Example Configuration – route map and prefix-lists

```
router bgp 100
neighbor 1.1.1.1 route-map infilter in
!
route-map infilter permit 10
match ip address prefix-list HIGH-PREF
set local-preference 120
!
route-map infilter permit 20
match ip address prefix-list LOW-PREF
set local-preference 80
!
ip prefix-list HIGH-PREF permit 10.0.0.0/8
ip prefix-list LOW-PREF permit 20.0.0.0/8
```

Policy Control - Route Maps

Example Configuration - route map and filter lists

```
router bgp 100
neighbor 102.10.1.2 remote-as 200
neighbor 102.10.1.2 route-map filter-on-as-path in

route-map filter-on-as-path permit 10
match as-path 1
set local-preference 80

route-map filter-on-as-path permit 20
match as-path 2
set local-preference 200

ip as-path access-list 1 permit _150%
ip as-path access-list 1 permit _210_

ip as-path access-list 2 permit
```

Policy Control - Route Maps

· Example configuration of AS-PATH prepend

```
router bgp 300
network 105.7.0.0 mask 255.255.0.0
neighbor 2.2.2.2 remote-as 100
neighbor 2.2.2.2 route-map SETPATH out
route-map SETPATH permit 10
set as-path prepend 300 300
```

· Use your own AS number when prepending Otherwise BGP loop detection may cause disconnects

Policy Control - Route Maps

Route Map MATCH Articles

ip next-hop as-path ip route-source cins address length cins next-hop metric clns route-source community nlri interface route-type ip address

tag

Policy Control - Route Maps

Route map SET Articles

as-path dampening automatic-tag default interface clns interface comm-list ip default next-hop community ip next-hop

Policy Control - Route Maps

Route map SET Articles

ip precedence next-hop ip qos-group nlri multicast ip tos nlri unicast level oriain local preference tag traffic-index metric metric-type weight

Policy Control -**Matching Communities**

Example Configuration

```
router bgp 100
neighbor 102.10.1.2 remote-as 200 neighbor 102.10.1.2 route-map filter-on-community in
route-map filter-on-community permit 10
match community 1
 set local-preference 50
route-map filter-on-community permit 20
match community 2 exact-match
 set local-preference 200
ip community-list 1 permit 150:3 200:5
ip community-list 2 permit 88:6
```

Policy Control -**Setting Communities**

Example Configuration

```
router bgp 100
network 105.7.0.0 mask 255.255.0.0
 neighbor 102.10.1.1 remote-as 200 neighbor 102.10.1.1 send-community
 neighbor 102.10.1.1 route-map set-community out
route-map set-community permit 10 match ip address prefix-list NO-ANNOUNCE
 set community no-export
route-map set-community permit 20
 match ip address prefix-list A
ip prefix-list NO-ANNOUNCE permit 105.7.0.0/16 ge 17 ip prefix-list AGGREGATE permit 105.7.0.0/16
```

Aggregation Policies

Suppress Map

Used to suppress selected more-specific prefixes (e.g. defined through a routemap) in the absence of the summary-only keyword.

Unsuppress Map

Used to unsuppress selected morespecific prefixes per BGP peering when the summary-only keyword is in use.

Aggregation Policies -**Suppress Map**

Example

```
router bgp 100
network 102.10.10.0
network 102.10.11.0
network 102.10.12.0
  network 102.10.33.0
  network 102.10.34.0
  aggregate-address 102.10.0.0 255.255.0.0 suppress-map block-net neighbor 102.5.7.2 remote-as 200
route-map block-net permit 10 match ip address prefix-list SUPPRESS
! ip prefix-list SUPPRESS permit 102.10.8.0/21 le 32 ip prefix-list SUPPRESS deny 0.0.0.0/0 le 32
```

Aggregation Policies -**Suppress Map**

· show ip bgp on the local router

```
router1#sh ip bgp
BGF table wersion is 11, local router ID is 102.5.7.1
Status codes: a suppressed, d damped, h history, * valid, > best, i - internal
Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop Metric LocPrf Weight Path
> 102.10.0.0/16 0.0.0.0 32768 i
s> 102.10.10.0 0.0.0.0 0 32768 i
s> 102.10.11.0 0.0.0.0 0 32768 i
s> 102.10.12.0 0.0.0.0 0 32768 i
>> 102.10.13.0 0.0.0.0 0 32768 i
>> 102.10.33.0 0.0.0.0 0 32768 i
>> 102.10.33.0 0.0.0.0 0 32768 i
>> 102.10.33.0 0.0.0.0 0 32768 i
```

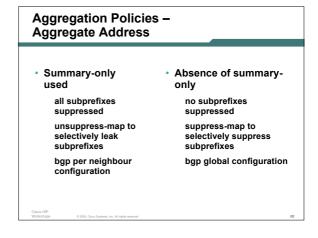
Aggregation Policies -Suppress Map

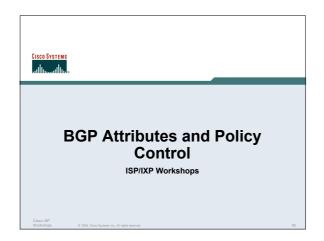
· show ip bgp on the remote router

```
Status codes: s suppressed, d damped, h history, \star valid, > best, i - internal
Status codes: s suppressed, d damped, h history, * valid, > bet Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop Metric LocPrf Weight Path
>> 102.10.0.0/16 102.5.7.1 0 100 i
>> 102.10.0.34.0 102.5.7.1 0 0 100 i
>> 102.10.34.0 102.5.7.1 0 0 100 i
```

Aggregation Policies -Unsuppress Map

```
    Example
```


```
router bgp 100
network 102.10.10.0
network 102.10.11.0
network 102.10.12.0
network 102.10.33.0
network 102.10.34.0
 aggregate-address 102.10.0.0 255.255.0.0 summary-only
neighbor 102.5.7.2 remote-as 200
neighbor 102.5.7.2 unsuppress-map leak-net
route-map leak-net permit 10
{\tt match \ ip \ address \ prefix-list \ LEAK}
ip prefix-list LEAK permit 102.10.8.0/21 le 32 ip prefix-list LEAK deny 0.0.0.0/0 le 32
```


Aggregation Policies -**Unsuppress Map**

· show ip bgp on the local router

```
routerl#sh ip bgp
BGF table version is 11, local router ID is 102.5.7.1
Status codes: s suppressed, d damped, h history, * valid, > best, i -internal
Origin codes: i - IGF, e - EGF, ? - incomplete
Network Next Hop
*> 102.10.0.0/16 0.0.0.0
                                                Metric LocPrf Weight Path
32768 i
                                                                       32768 i
s> 102.10.33.0
s> 102.10.34.0
                                                                       32768 i
32768 i
```

* Show ip bgp on the remote router router2#sh ip bgp BGP table version is 90, local router ID is 102.5.7.2 Status codes: s suppressed, d damped, h history, * valid, > best, i - internal Origin codes: i - IGP, e - EGP, ? - incomplete Network Nettrop Metric LocPrf Weight Path *> 102.10.0.0/16 102.5.7.1 0 0 100 i *> 102.10.10.1 102.5.7.1 0 0 100 i *> 102.10.11.0 102.5.7.1 0 0 100 i *> 102.10.12.0 102.5.7.1 0 0 100 i *> 102.10.12.0 102.5.7.1 0 0 100 i

