UTER 26 tudo o que você nao

Luiz Eduardo Dos Santos CISSP CWNE CEH CISP CCIH Sr. Systems & Security Engineer Americas

hello

Confidential

GTER 26 - São Paulo - Brasil

agenda

- evolution of wi-fi
- what makes lin
- what actually matters
- myths
- challenges
- security
- conclusion

802.IIb

- First widely deployed WiFi standard
- 2.46H∠ band
- Single carrier (22MHz)
- CSMA/CA MAC
 - Random backoffs
 - MAC-layer acknowledgments
 - Retransmit failed packets
- l, 2, 5.5, Imbps PHY rates
- Maximum of ~7 mbps user throughput

802.lla

5GHz band - not compatible with 802.11b

- 48 data + 4 pilot subcarriers in 20 MHz bandwidth
- Increased robustness and spectral efficiency
- QAM modulation
- MAC essentially identical to 802.llb
- 6, 9, 12, 18, 24, 36, 48, 54 mbps PHY rates
- Maximum of ~36mbps user throughput

802.llg

802.11a/g Rat	es	
Modulation	Coding	Mbps
BPSK	1/2	6
BPSK	3/4	9
QPSK	1/2	12
QPSK	3/4	18
16-QAM	1/2	24
16-QAM	3/4	32
64-QAM	2/3	48
64-QAM	3/4	54

Confidential

UTER 26 - São Paulo - Brasil

quick facts

- 2.4 GHz and/or 5GHz
- Backward compatible with lbg and/or lla
- PHY Enhancements
 - 20MHz and 40MHz channels
 - Multiple radio chains
 - Spatial multiplexing (I, 2, 3, or 4 spatial streams)
 - Short guard interval
- MAC Enhancements
 - Aggregation & Block ACK
- Many optional extensions (e.g. beamforming)
- Maximum of 200+ mbps user throughput

simo x mimo

Confidential

GTER 26 - São Paulo - Brasil

GTER 26 - São Paulo - Brasil

theoretical throughput of 802.11n

Expected 802.11n Data Rates

		One Spatial Stream			Two Spatial Streams	
802.11a 802.11g Rates	11n Mandatory Data Rates	With Channel Bonding (40MHz)	With Short Guard Interval	Two Spatial Streams	With Channel Bonding (40MHz)	With Short Guard Interval
6	6.5	13.5	15	13	27	30
9	13	27	30	26	54	60
12	19.5	40.5	45	39	81	90
18	26	54	60	52	108	120
24	39	81	90	78	162	180
36	52	108	120	104	216	240
48	58.5	121.5	135	117	243	270
54	65	135	150	130	270	300

Key benefits:

- 1. Second spatial stream doubles the rate
- 2. Channel bonding roughly doubles the rate
- 3. Short guard interval increases rate by roughly 10%

Note: the standard specifies up-to 600Mbps rates (4 spatial streams) - not supported by current generation chips

Other Takeaways

- 1. Higher Throughput with increase of PHY rate from 54 Mbps (.11g) to 300 Mbps (.11n)
- 2. Complexity of Selecting the Optimum Data Rate (8 rates for .11g vs. 12 rates for a two TX system and 24 rates for a three TX system)
- 3. Exponentially more difficult with additional modulation options (unequal modulation)

HO MHZ channel (aka channel bonding)

Wider bandwidth is analogous to wider highways

- Combines 2 x 20 MHz channels to increase spectral efficiency in periods of minimum interference
- regular implementations could be susceptible to interference
- Usually results in higher and more
 Consistent throughput
 2.4 GHz Effective in certain situations

•Reduces the time exposed to interference

5 CH2 operation

Operating in a cleaner frequency range, but more challenged attenuation

- Less crowded RF environment (most devices occupies
 2.4 GHz range)
- More channels to operate (23 channels versus 3 channels)
- Higher attenuation of RF signals versus 2.4 GHz

PHY rates for current IIn chipsets

802.11n HT	Rates			20 M	Mhz	40 M	۸hz
				GI=800	GI=400	GI=800	GI=400
# Spatial							
Streams	Modulation	Coding	MCS	Mbps	Mbps	Mbps	Mbps
1	BPSK	1/2	0	6.5	7.2	13.5	15
1	QPSK	1/2	1	13	14.4	27	30
1	QPSK	3/4	2	19.5	21.7	40.5	45
1	16-QAM	1/2	3	26	28.9	54	60
1	16-QAM	3/4	4	39	43.3	81	90
1	64-QAM	2/3	5	52	57.8	108	120
1	64-QAM	3/4	6	58.5	65	121.5	135
1	64-QAM	5/6	7	65	72.2	135	150
2	BPSK	1/2	8	13	14.4	27	30
2	QPSK	1/2	9	26	28.8	54	60
2	QPSK	3/4	10	39	43.4	81	90
2	16-QAM	1/2	11	52	57.8	108	120
2	16-QAM	3/4	12	78	86.6	162	180
2	64-QAM	2/3	13	104	115.6	216	240
2	64-QAM	3/4	14	117	130	243	270
2	64-QAM	5/6	15	130	144.4	270	300

IIn multi-radio techniques

maximum ratio combining

cyclic delay diversity

spatial multiplexing

transmit beamforming

Confidential

UTER 26 - São Paulo - Brasil

maximum ratio combining

multiple receive radios

- mathematically combines signals
 - minimize errors
 - increase reliability
- backwards compatible with 802.llabg
- max theoretical gain
 - 2 rx chains: 3 dB
 - 3 rx chains: 5 dB
 - 4 rx chains: 6 dB
- works well in practice

Data A

Non 802.11n Wi-Fi client

cyclic delay diversity

- multiple transmit radios
- backwards compatible with 802.llabg devices (legacy receiver)
- constantly vary the phase of 'extra' transmit signals to minimize self-interference
- does NOT always work well in practice
 - especially in line-of-sight conditions

spatial multiplexing

- multiple Transmit radios
- multiple Receive radios
- requires support on both ends
- send data in parallel making use of multipath and DSP to decode
- 2, 3, or 4 Spatial Streams
 - Current chipsets implement 2 streams
- # radios must be >=
 # spatial streams
- sensitive to propagation environment

Confidential

CTER 26 - São Paulo - Brasil

IIn transmit beamforming

multiple transmit radios

- Use feedback and DSP to modify phase of each radio transmission
 - goal is to have them all arrive 'in-phase' at the receiver
- requires client support
- optional in IIn
 - not yet implemented in commercial chipsets
- theoretical gains similar to MRC but real-life gains are much lower due to implementation difficulties

In aggregation

- 802.11 has high per-frame overhead
 - minimum interframe spacing
 - channel access time (random backoff)
 - physical layer headers
 - mAC headers
 - 802.11 acknowledgement

 increasing PHY rate reduces time spent transmitting data but does not reduce the fixed overhead!

- 802.lln would max out at around 50 mbps user throughput without aggregation
- with IIn aggregation, AP combines multiple frames and transmits them 'back-to-back' as one physical layer frame

Data Data Data Data Data Data Data

normal 802.11 acknowledgement

- Very high Packet Error Rates at the physical layer
 - 2% 20% are typical
 - 30% 40% not uncommon
- retransmissions are necessary to provide the low Packet loss rates that most applications require

Confidential

- 802.11 unicast packets are always acknowledged if successfully received
- 802.11 ACK is a very reliable mechanism
 - dedicated timeslot after data transmission
 - ACK is a very small frame (compared to data)
 - often sent at lower PHY rate than data frame

CTER 26 - São Paulo - Brasil

802.IIn block ack

- used to make aggregation reliable
- extension of existing 802.11 ack mechanism
 - bitfield to individually acknowledge subframes
 - only the failed subframes need to be retransmitted
- enables user throughputs very close to the PHY data rate

pretty cool, huh?

maybe not...

Confidential

UTER 26 - São Paulo - Brasil

legacy-lln coexistence

- legacy clients and IIn clients can coexist on the same IIn AP
 - legacy clients use lla/b/g rates
 - In clients use IIn phy rates
- but since clients 'share the air', legacy clients can consume a disproportionate share of the airtime
- smart AP scheduling algorithms can mitigate this effect

• it's all about airtime

and (self note) check YOUR TIME

Confidential

CTER 26 - São Paulo - Brasil

IIn operation modes

Mode 0: (called "Greenfield" Mode) - if all stations in a 20/40 MHz BSS are 20/40 MHz HT capable or if all stations in the BSS are 20 MHz HT stations in a 20 MHz BSS.

<u>Mode I</u>: (called HT non-Member Protection Mode) - used if there are non-HT stations or APs using the primary and/or secondary channels

<u>Mode 2</u>: (called HT 20 MHz Protection Mode) - if only HT stations are associated in the 20/40 MHz BSS and at least one 20 MHz HT station is associated.

Mode <u>3</u>: (called HT Mixed Mode) - used if one or more non-HT stations are associated in the BSS.

info from the cwmp.com folks

If you use wep or tkip, In will drop automagically to Ilg speeds?

draft 2.0 says so, and IMHO it's a good thing

Confidential

UTER 26 - São Paulo - Brasil

(some of the) IIn challenges

- Iln significantly improves best-case
 throughput
- but .lln has more performance variability
 - spatial Multiplexing requires de-correlated paths
 - use of HOMH∠ limited by interference
 - ore MAC+PHY parameters to optimi∠e in real-time
 - selection of # of spatial streams
 - 40MHZ versus 20MHz channels
 - Iong versus short Guard Interval
 - more sensitive to interference

spatial multiplexing problems

- SM requires each Spatial Stream to propagate differently through the environment
- If signal takes the same path from Tx antennas to RX antennas the spatial streams will interfere with each other
 - always a problem in Line-Of-Site environments
- furthermore, the signal quality of the worse of the two streams determines usable phy rate for both streams
- In many cases SM is not viable due to these issues
 - fallback to non-SM rates is common
 - In performance driven by % of time and locations the AP can use SM

okay, it sucks then?

absolutely not

Confidential

GTER 26 - São Paulo - Brasil

Wireless Network Connection	6 Status	
General Support		
Connection		
Status:	Connected	
Network:	LOLs	
Duration:	00:02:35	
Speed:	300.0 Mbps	
Signal Strength:	and a second	
- Activity		
	a	
Sent —	() Received	
Butee: 122.920	 	
bytes. 155,050	230,703	
Properties Disable	View Wireless Networks	

10 Mh2

× NETGEAR WNDA3100 SMART WIZARD Statistics Networks Settings About NETGEAR[®] elected Adapter: RangeMax Dual Band Wireless-N USB Adapter - Transmit / Receive Performance(%) Transmit Statistics 0.00 Tx Mbps: 25% 0 Tx Packets/s: 1525 Total Tx Packets: 0 Tx Errors: 12.5% **Receive Statistics** 0.00 Rx Mbps: 0 Rx Packets/s: 0% 1319 Total Rx Packets: C Transmit C Receive Total(Tx/Rx) 0 Rx Errors: (00-1E-58-25-0E-6F) Connected to Internet Ch: 11, 7 300 Mbps Signal Q Help Close

mix mode/ n and g

security considerations?

- on top of what was mentioned...
- pre-N greenfield aps/ bridges
- does not address mgmt frames crypto

conclusion

CAN SOMEONE JUST MAKE MY WIAKE SUCK LESS?

questions?

Confidential

HELP!

GTER 26 - São Paulo - Brasil

obrigado!

le[@]ruckuswireless.com

