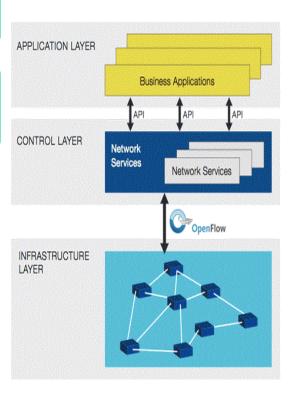


SDN: potencialidades e desafios

SDN: conceitos



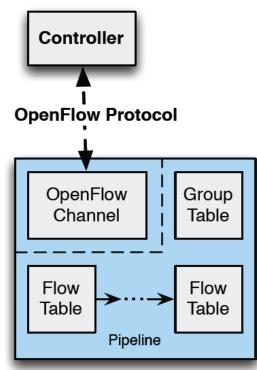
Definição de Software Defined Network (SDN)

The physical separation of the network control plane from the forwarding plane, and where a control plane controls several devices.

The SDN architecture is:

- Directly programmable
 - Podemos *programar* o nosso control plane, criando novas regras em L2, L3 e MPLS
- Agile
 - Como o control plane agora pode gerenciar diversos planos de encaminhamento, alterando as regras eu posso reconfigurar instantaneamente o comportamento da minha rede
- Centrally managed
 - Grande potencial para abstrações
- Programmatically configured
 - Podemos programar as ações de config, OAM, segurança, otimização
- Open standards-based and vendor-neutral
 - Modelo de negócio Open Source

Definição do OpenFlow



A especificação descreve os requisitos de um switch OpenFlow em termos de flow e group tables, com matches, actions e counters.

É definida ainda a abstração de portas e tabelas, bem como o canal de comunicação entre o switch e o controler.

Por fim, o coração da especificação é definido: o protocolo OpenFlow para troca de mensagens entre o switch e o controlador.

• Desta maneira o controlador consegue adicionar, atualizar, excluir e obter informações das tabelas de encaminhamento do switch.

OpenFlow Switch

Openflow: Modo Reativo e Pró-ativo

Reativo

O primeiro pacote do fluxo aciona o controlador para inserir uma entrada na Flow Table

Uso eficiente da Flow Table

Cada novo fluxo tem um atraso para sua configuração

Maior fluxo de mensagens entre controlador e switch

Pró-ativo

O controlador popula previamente a Flow Table

Não há perda de tempo configurando a Flow Table

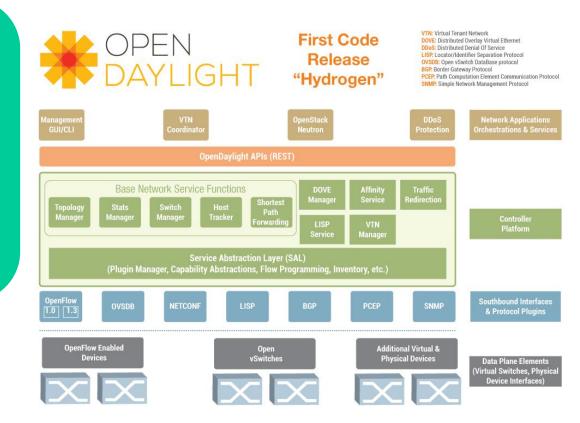
Requer fluxos mais abrangentes

Flows não previstos são descartados

ONF: Northbound Interface Working Group

- Criado nas últimas semanas
- A ONF vislumbrou a necessidade de padronizar o North Bound em virtude da grande quantidade de controlers e suas respectivas APIs.

ONF: Optical Transport & Wireless & Mobile Working Groups


• Temos a oportunidade de ter visibilidade e controle entre os diferentes planos de dados (ótico, IP, wireless) possibilitando otimizações e reuso, como uma alternativa ao GMPLS.

Outras iniciativas de padronização

Mission: to facilitate a community-led, industry-supported open source platform, including code and architecture, to accelerate adoption of SDN and Network Functions Virtualization

- Controler em Java, OpenSource, que forneça código de referência para a padronização.
- Hydrogen: atualmente no RC2, com previsão de disponibilização em 09 de Dezembro!

Capex => promessa de hardwares padronizados, mais baratos

- Uma janela de browser ⇔ UOL : 53 sessões
- 256.000 ACLs / 53 = 4.830 usuários
- Quantas requisições por segundo o processador (não o silício de encaminhamento de pacotes) dos switches OpenFlow terá que suportar no modo reativo? E o controler + aplicação? E o delay na resposta?

Opex => promessa de redução na complexidade, no tempo e nas equipes necessárias para manter a rede

• A complexidade da operação de uma rede IP é maior que uma rede SDH. Tratar fluxos, mesmo que de maneira programática e ativa, será mais simples que operar uma rede IP?

Novos requisitos incompatíveis com uma estrutura estática

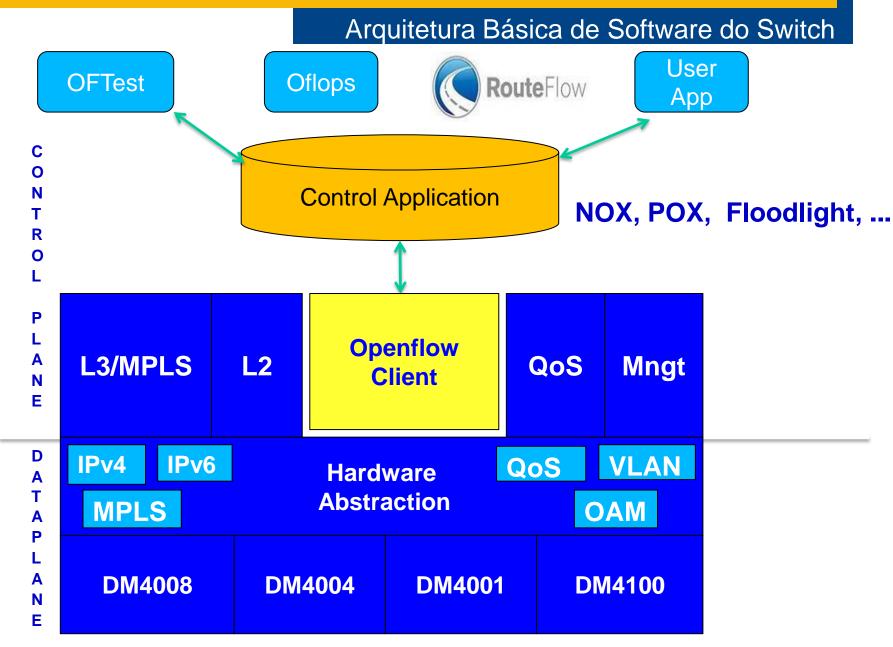
- Crescimento acelerado
- Serviços de Cloud de larga escala: moving de VMs, Orquestração (OpenStack, CloudStack, AWS, ...)

Capacidade para inovar!

- Novos serviços, provisionamento on-demand, promoções, forte integração com OSS / BSS
- A padronização é muito demorada (RFCs, IEEE, ISSO, ETSI) e vários PoC precisam ser feitos para garantir interoperabilidade

Projeções: quanto será a realidade?

Fonte: SDN Market Sizing, Plexxi, Lightspeed Venture Partners, SDNCentral, Abril 2013

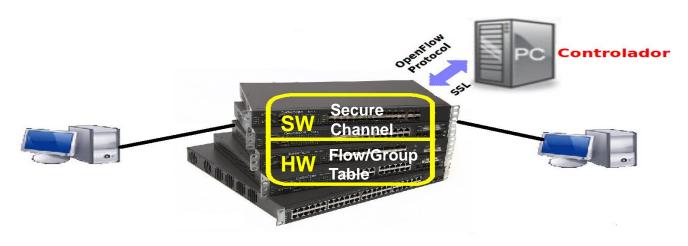

The software-defined networks (SDN) market will reach \$3.7 billion by 2016 and account for 35% share of Ethernet switching in the datacenter, up from almost negligible penetration in 2012.

Fonte: IDC Predictions 2013: Competing on the 3rd Platform, November 2012

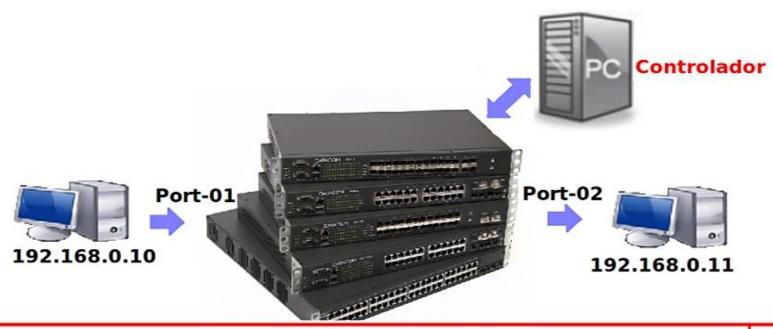
SDN Openflow: funcionamento

DATACOM

Openflow: Funcionamento Básico


Através de um canal seguro, o controlador se comunica com o switch usando o protocolo OpenFlow, gerenciando os fluxos que serão armazenados na Flow Table.

Controlador


• Responsável pelas decisões de encaminhamento/roteamento, criando uma abstração da rede (control path).

Flow / Group Table

• Mantém um conjunto de Flows que definem ações simples e unidirecionais de encaminhamento (data path).

Openflow: Funcionamento Básico

Match										Ação			
Priority	Ingress Port	MAC source address	MAC destination address	ether type	VLAN id	VLAN priority	IP source address	IP destination address	IP tos	IP protocol	TCP source port	TCP destination port	Action
-	-		-	0x800		•	192.168.0.10	192.168.0.11	-	-	-	-	Output:2

Openflow: Exemplos de Flows Suportados

Switch Port	MAC s rc	MAC dst	Eth type	VLAN ID	IP src	IP dst	IP prot	IP DSCP	TCP/ UDP src p ort	TCP / UDP dst p ort	Action	
*	*	00:1f: .	*		*	*	*	*	*	*	Port X	

Routing

Switch Port	MAC s rc	MAC dst	Eth type	VLAN ID	IP src	IP dst	IP prot	IP DSCP	TCP/ UDP src p ort	TCP / UDP dst p ort	Action
*	*	*	*	*	*	10.1.1.1	*	*	*	*	Mod MACs

Firewall

Switch Port	MAC s rc	MAC dst	Eth type	VLAN ID	IP src	IP dst	IP prot	IP DSCP	UDP src	TCP / UDP dst p ort	Action	
*	*	*	*	*	*	*	*	*	*	23	Denv	

Flow Switching

Port 7	SrC	dst . 00:1f:	type		10.1.1.3		17	DSCP 46	p ort	dst port	
Switch	MAC		Eth	VLAN	IP src	IP det	IP prot	IP	TCP/ UDP src		Action

DATACOM

Port X

Openflow: Características importantes

Suporte a TLS

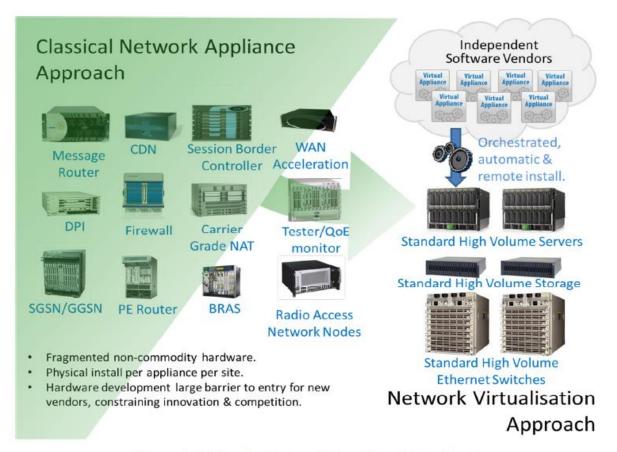
Suportar todos os matches em HW

Suportar todas as ações requeridas

Suportar action modify em HW (i.e. src MAC, dst MAC, port x, ...)

Suporta múltiplas ações (i.e. mudar MACs e redirecionar fluxo)

Demonstração de Aplicação Simples SDN/Openflow


Network Function Virtualization

Definindo NFV

Definition

Network Functions Virtualisation aims to transform the way that network operators architect networks by evolving standard IT virtualisation technology to consolidate many network equipment types onto industry standard high volume servers, switches and storage, which could be located in Datacentres, Network Nodes and in the end user premises, as illustrated in Figure 1. It involves the implementation of network functions in software that can run on a range of industry standard server hardware, and that can be moved to, or instantiated in, various locations in the network as required, without the need for installation of new equipment.

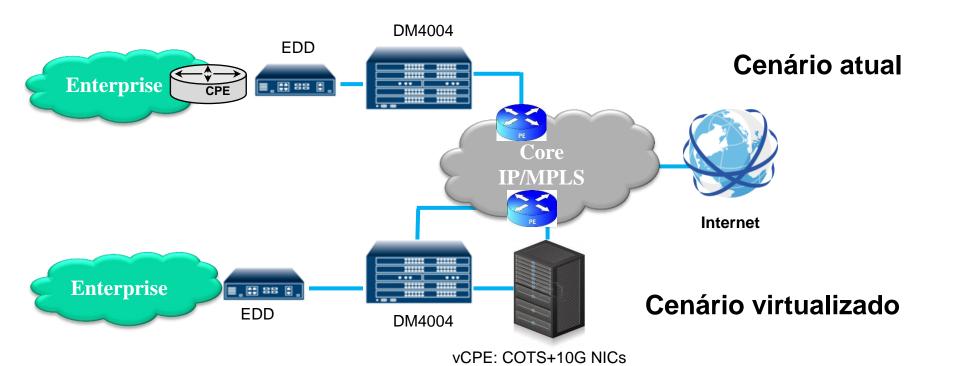
From ETSI® NFV White Paper

Figure 1: Vision for Network Functions Virtualisation

NFV Use Cases

USE CASE	DESCRIPTION						
Virtualization of	Virtualization of core network nodes, including IMS. Affected functions could include						
mobile core network							
nodes	mobile home subscriber servers.						
Virtualization of mobile base stations	Aims at realizing the base station function (at least specific functional block) with software based on standard IT platform. Mainly focused on LTE LTE-A, but similar concept can be applied to 2G, 3G and WiMax.						
Virtualized home environment	Aims to shift functionality away from the home to a network-located environment as a way to solve many installation and lifecycle upgrade problems, consolidating the corresponding workloads into equipment installed in the network operator premises. /irtualization targets include: residential gateway; set-top box; WiFi access points; home eNodeB.						
	Possible virtualization targets: enterprise access router/enterprise CPE, provider edge						
Virtualized network	router, enterprise firewall, enterprise NG-FW, enterprise WAN optimization, deep packet						
function as a service	inspection (appliance or a function), IPS – and other security appliances, network						
	performance monitoring.						
Service chains with NFV	Virtualizing the appliance functions and putting them into applications on a server in a single location or area – making service analysis more efficient and streamlining the flow of traffic in the network.						
Virtualization of CDNs	Virtualization of content delivery networks (CDNs) potentially covers all components of the CDN, though the initial impact would probably be on cache nodes for achieving acceptable performance (e.g., throughput, latency).						

NFV Use Case 1: CPE Virtual


Funcionalidades que serão virtualizadas agora:

- AR Enterprise Access Router => Scale Up and Down
 - [cliente] Eu posso atualizar o meu canal Internet?
 - [provedor] É claro! Você possui um canal de 100Mbit/s, mas o seu acesso Ethernet é de 1Gbit/s. Quanto você precisa, desde 100M até 1G?
- FW / NG-FW Enterprise Firewall => Managed Firewall as a Service
 - [cliente] Eu quero 150Mbit/s por enquanto, porque meu Firewall não vai aguentar mais que isso.
 - [provedor] Opa! Se vocês quiser eu posso adicionar um Firewall e VPN também no pacote. E tudo isso eu configuro agora, basta marcarmos a JM para ativar. Isso vai te custar R\$ xxx/mês.
- Network Performance Monitoring => alta integração com OSS e BSS

Outras possibilidades => XaaS

- WOC WAN Optimization Controller
- DPI Deep Packet Inspection
- IDS / IPS Intrusion Detection/Protection System

CPE virtual faz sentido especialmente em cenários de Active Ethernet e FTTH

- DM4000 ⇔ EDD
- IPSAN ⇔ DSL, ONT

DATACOM

Visão estratégica

Visão Estratégica sobre SDN/Openflow

Disponibilizar plataforma de apoio à inovação

- Projeto RNP FIBRE (http://www.fibre-ict.eu/index.php/testbeds/fibre-br)
- •Projeto com universidades => RSA04 Workshop 01 (http://rsa.ansp.br/index.php?option=com_content&view=article&id=100&Itemid=749&Iang=br)

Desenvolver a **indústria e tecnologia nacional** a partir das oportunidades com SDN

- Cooperação DATACOM e CPqD, RNP, ANSP
- Diversas universidades e centros tecnológicos desenvolvendo soluções

Ampliar o mercado de Ethernet switches

• Equipamentos híbridos que suportam protocolos tradicionais e também Openflow

Ampliar a inovação e a velocidade na criação e entrega de novos serviços

Diferenciação, provendo algo diferente do acesso Internet, L2L, L3VPN

Mudança rápida de um paradigma de Telecom para TI

 Pensar agora no perfil das equipes dos provedores de serviços, pensar nas parcerias e no apoio local que os fabricantes conseguirão suportar

sdn.datacom.ind.br

Obrigado!

Marcelo Barcelos Adriano Favaro João Strapasson

Ethernet Switches

+55 (51) 3933 3000

www.datacom.ind.br

barcelos_at_datacom_dot_ind_dot_br

favaro_at_datacom_dot_ind_dot_br

Joao_dot_strapasson_at_datacom_dot_ind_dot_br

Backup Slides

Visão Geral sobre a DATACOM

Fabricação Própria em uma área de 13.000+ m² em Eldorado do Sul

800+ colaboradores sendo 350+ atuando diretamente em P&D

100.000 equipamentos/mês com mix típico de produto

4 Centros de P&D no Brasil

Tecnologia Própria e Desenvolvimento Nacional

Autonomia para Decisão e Priorização

Locais de P&D e Suporte Técnico

DATACOM

☆ Centros de P&D
★ Suporte Técnico

☆ Comercial

† Fábrica

Linha de Produtos DATACOM

Ethernet Switches

SDH Mux

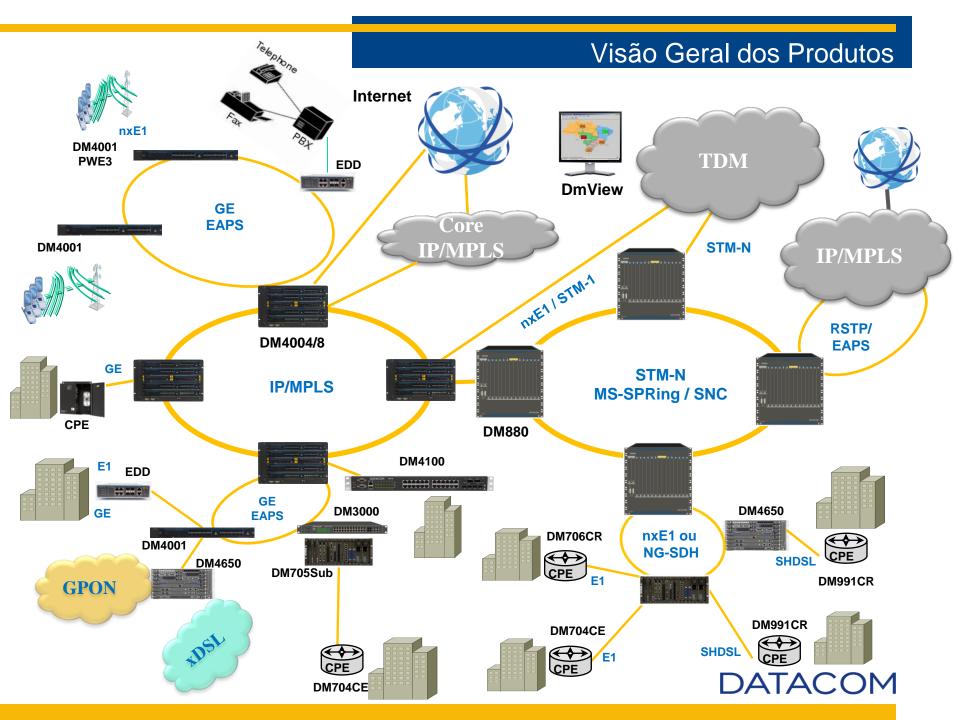
Access & MSAN

Vantagens de P&D e Tecnologia Nacional

Autonomia para decisão

Priorização do Roadmap às demandas dos clientes

Agilidade para geração de protótipos


Desenvolvimento Tecnológico Nacional

Segurança Tecnológica Nacional

Incentivos do Governo

Rede de Parceiros Tecnológicos

Cooperação com instituições Acadêmicas

Principais Tecnologias na DATACOM

Ethernet, IP, MPLS, QoS

Roteamento IPv4 e IPv6

Multicast IPv4 e IPv6

HW de Alta Complexidade

Ethernet Switch ASICs

Network Processor

Lógica Programável (FPGA)

Gerência de Redes

Cliente/Servidor e Database

Multiplexação SDH, TDM

TDM over IP

Modens xDSL

Transmissão Ótica

SDN/Openflow

SDN é uma evolução das tecnologias DATACOM!

DATACOM

Openflow no Produtos DATACOM

EVOLUÇÃO Openflow na DATACOM

DATACOM

OUT 2010	Workshop Internet Futuro em Brasília
DEZ 2011	DATACOM e ANSP decidem cooperar na área de SDN/Openflow
OUT 2012	DATACOM lança Switches Híbridos Openflow
DEZ 2012	DATACOM e RNP firmam contrato para fornecimento de Switches para FIBREnet
JAN 2013	 DATACOM e CPqD firmam Cooperação em SDN Projeto ANSP-DATACOM-Universidades Paulistas
FEV 2013	Início Primeiro Plano de Trabalho CPqD-DATACOM
ABR 2013	 Treinamento Openflow para Universidades Paulistas CPqD demonstra IVR na ONS2013 usando DM4001 Openflow
MAI 2013	DATACOM selecionada pela UFU para fornecer Switch Openflow e ToR para projeto EDOBRA- OFELIA
JUN	DM4100 selecionado como switch ToR para ilhas do FIBRE
2013 AGO	Seminário SDN DATACOM em Curitiba/PR

2013

Linha de Produto: Openflow Ethernet Switch

100FE > 1GE > 10GE

Linha DM4000

DM4008

DM4004

DM4001

Características Principais DM4000

Portas 10/100/1000 BASE-T, 100/1000 BASE-X e 10G XFP

Equipamentos modulares com opção de versão Chassis, Standalone ou Stacking

Até 384 portas 1GE ou 32 portas 10GE

4094 VLANs de uso simultâneo

Até 512k MACs, até 512k rotas IPv4, até 256k IPv6 (Full Routing BGP)

4k multicast IPv4/IPv6

QinQ, xSTP, EAPS, ERPS, LACP, OAM-EFM, OAM-CFM, Y.1731

Até 256k regras de filtros para fluxos com diversos critérios de matches

Suporta MPLS (VPWS, VPLS, H-VPLS, L3VNP, Push/Pop de Label, ...)

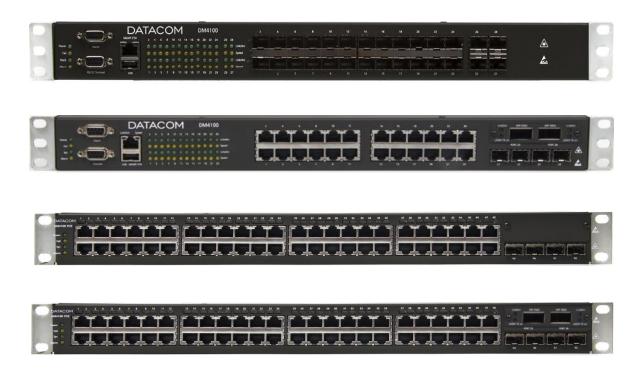
Openflow 1.0.0

DM4000: Opções de Chassis e Matriz

Chassis	Height	Number of LICs	Numbe r of MPUs	GPC	Power Supply	Power Options
DM4001	1U	1	-	-	Redundant Hot Swap	AC/DC
DM4004	7 ^{1/2} /6U	4	2	2	Redundant Hot Swap	AC/DC
DM4008	11 ^{1/2} /10U	8	2	2	Redundant Hot Swap	AC/DC

MPU	Throughput Total	DM4004 Throughput por slot	DM4008 Throughput por slot
MPU192	192Gbps	48Gbps	24Gbps
MPU384	416Gbps*	104Gbps*	52Gbps*
MPU512	512Gbps	128Gbps	64Gbps
MPU960**	960Gbps	240Gbps	120Gbps

^{*}Maximum throughput when using H Series LICs


^{**}Check commercial availability

DM4000: Opções de Cartões de Interface

DM4000		Interfac	es		Switch	MPLS	
DINITOOO	10/100/1000 BaseT	100/1000 BaseX (SFP)	10GBase X (XFP)	Others	Fabric	LSR/LER VPN	
ETH24GT H	24				48 Gbps	X	
ETH48GT H	48				96 Gbps	X	
ETH24GP H*	24 PoE				48 Gbps	X	
ETH48GP H*	48 PoE				96 Gbps	X	
ETH24GX H		24			44 Gbps	Х	
ETH48GX H		48			96 Gbps	X	
ETH24GX+2x10GX H		24	2		88 Gbps	X	
ETH4x10GX H			4		80 Gbps	X	
ETH10x1GX+32xE1		10		32xE1	24 Gbps	Х	
ETH10x1GX+4xSTM1		10		4xSTM1	24 Gbps	X	
ETH20GX+32xE1 H*		20		32xE1	44 Gbps	X	
ETH16GX+4xSTM1 H*		16		4xSTM1	44 Gbps	X	
ETH20GX+2x10GX+32xE1 H*		20	2	32xE1	84 Gbps	X	
ETH16GX+2x10GX+4xSTM1 H*		16	2	4xSTM1	76 Gbps	X	

^{*}Verificar disponibilidade

Linha DM4100

DM4100: Principais modelos

		Interfa	ices	
DM4100*	10/100/1000 Base-T	100/1000 Base-X (SFP)	10GBase- X (XFP)	Combo elétrica / SFP
ETH24GX+4GX		28		
ETH24GX+2XX		24	2	
ETH24GX+4XX		24	4	
ETH20GT+4GC	20			4
ETH20GT+4GC+2XX	20		2	4
ETH20GT+4GC+4XX	20		4	4
ETH44GT+4GC	44			4
ETH44GT+4GC+2XX	44		2	4
ETH44GT+4GC+4XX	44		4	4
ETH20GP+4GC	20 PoE+			4 PoE+ ou SFP
ETH20GP+4GC+2XX	20 PoE+		2	4 PoE+ou SFP
ETH20GP+4GC+4XX	20 PoE+		4	4 PoE+ou SFP
ETH44GP+4GC	44 PoE+			4 PoE+ou SFP
ETH44GP+4GC+2XX	44 PoE+		2	4 PoE+ou SFP
ETH44GP+4GC+4XX	44 PoE+		4	4 PoE+ou SFP

^{*}Consultar comercial/suporte para lista completa de modelos

Características Principais DM4100

Suporte alimentação AC/DC

Portas 10/100/1000 BASE-T, 100/1000 BASE-X e XFP

Opção de modelos com portas PoE+

Possibilidade de empilhamento (stacking)

Versão de 48P ou 24P

32k MACs

4096 VLANs de uso simultâneo

12k rotas IPv4 e 6k IPv6

4k multicast IPv4/IPv6

Até 4k* regras de filtros para fluxos com diversos matches

MPLS* (VPWS, VPLS, H-VPLS,L3VPN, ...)

Openflow 1.0.0

DATACOM