

Técnicas e Ferramentas Utilizadas em Análise Forense

Arnaldo Candido Junior Almir Moreira Saúde

Prof. Dr. Adriano Mauro Cansian
Coordenador

ACME! Computer Security Research LabsUNESP - Universidade Estadual Paulista
Campus de São José do Rio Preto

Roteiro

- Introdução.
- Metodologia para forense.
- Preparação, coleta e análise.
- Coleta e análise a partir de comandos nativos do UNIX.
- Ferramentas TCT, TCTUtils e TASK.
- Outras ferramentas.

Introdução

Ciência Forense:

 "A aplicação de princípios das ciências físicas ao direito na busca da verdade em questões cíveis, criminais e de comportamento social para que não se cometam injustiças contra qualquer membro da sociedade" [1].

• Forense computacional:

- "O uso de métodos científicos para preservação, coleta, restauração, identificação, documentação e apresentação de evidências digitais" [2].

- [1] Manual de Patologia Forense do Colégio de Patologistas Americanos
- [2] Forensic Science Comunications

Evidência digital

- Evidências digitais são informações em formato digital capazes de determinar se um sistema computacional sofreu uma violação, ou que provêem uma ligação com a vítima ou com o atacante.
 - Evidências desta natureza podem ser duplicadas com exatidão.
 - É possível verificar se sofreram alterações com os métodos adequados.
 - São altamente voláteis, podendo ser alteradas durante a análise, caso as devidas precauções não sejam tomadas.
- Principio da Troca de Locard.
 - Toda a pessoa que passa pela cena de um crime, deixa algo de si e leva algo consigo.
 - De forma análoga, toda a pessoa que comete um crime digital, deixa rastros no sistema comprometido. Os rastros podem ser difíceis de serem seguidos, mas existem.

Forense Computacional

- Exames forenses tradicionais, como o exame de DNA, são realizados através de métodos e procedimentos bem definidos.
 - A análise é efetuada através de passos rotineiros, repetidos em cada caso.
- Geralmente, a estratégia para forense computacional é particular em cada caso.
 - Heterogeneidade de softwares.
 - Heterogeneidade de hardwares.
 - Uso de padrões distintos.
 - Constantes mudanças na tecnologia.
- Os métodos para a forense computacional devem ser genéricos o suficiente para acomodar todas essas mudanças.

Métodos e procedimentos

- Simplificam o processo de coleta, armazenamento e análise de evidências.
- Minimizam o pânico e reações negativas em circunstâncias em que a perícia é conduzida sobre níveis elevados de estresse, evitando um possível comprometimento das evidências.
- Contribuem para validar as evidências coletadas em um processo criminal.
- Necessitam de uma fase de planejamento para sua correta aplicação.

Resposta a Incidentes

- Metodologia de resposta em 6 passos (SANS Institute):
 - Preparação: envolve o planejamento e definições de políticas para lidar com o incidente quando detectado.
 - Identificação: caracterização da ameaça e seus efeitos nos sistemas afetados.
 - Contenção: consiste em limitar o efeito do incidente de modo que atinja o menor número de sistemas possíveis.
 - Erradicação: estágio no qual as conseqüências causadas pelo incidente são eliminadas ou reduzidas.
 - Recuperação: retomada das atividades em andamento antes do incidente ocorrer. Também restauração de dados caso necessário.
 - Continuação: medidas necessárias para evitar que a ocorrência do incidente seja repetida.

Metodologia para a perícia

- Coleta de informações.
- Reconhecimento das evidências.
- Restauração, documentação e preservação das evidências encontradas.
- Correlação das evidências.
- Reconstrução dos eventos.

Preparação (1)

- Definições de políticas a serem seguidas e ações a serem tomadas durante a perícia.
- Medidas preventivas para evitar o comprometimento do sistema computacional.
- Monitoramento para detectar incidentes quando ocorrerem.
- Escolha das ferramentas mais adequadas para coleta e análise de evidências.

Preparação (2)

- Os mecanismos de rede podem fornecer informações valiosas para análise quando corretamente configurados.
 - Firewalls/Sniffers/Detectores de Intrusão.
 - Roteadores e gateways em geral.
 - Servidores de DNS e Proxy.
 - Servidores de backups.
 - Coletores de fluxos.
- Avisos sobre alterações no sistema podem ser obtidas a partir do uso de ferramentas como o monitorador *Tripwire*.
- É recomendável o uso de um *host* exclusivo para coleta de *logs*. *Logs* locais podem ser facilmente removidos por um atacante com acesso administrativo.

Coleta (1)

- A coleta de evidências é feita principalmente com base nos dados obtidos a partir dos discos rígidos e das demais mídias físicas.
- Caso o sistema ainda esteja em funcionamento, pode-se recuperar evidências adicionais.
 - É recomendável interromper a energia ao invés de desligar o sistema de modo habitual.
 - Permite preservar o estado do sistema (*swap*, arquivos temporários, marcas de tempo nos arquivos, ...).
 - Pode evitar armadilhas programadas para disparar durante o desligamento do sistema.
 - Deve ser observado o tempo de vida de cada evidência.

Coleta "Online"

- Examinar uma parte do sistema irá perturbar outras partes:
 - O simples fato de observar informações de determinados tipos é capaz de alterá-las.
 - As informações devem ser preferencialmente coletadas de acordo com seu tempo de vida.

Tempo de vida

- Registradores, cache
- Memória dos periféricos (ex. vídeo)
- Memória RAM
- Tráfego de rede
- Estado do sistema Operacional (processos, usuários logados, conexões estabelecidas, ...)
- Disco Rígido
- Mídias secundária (cd-roms, backups)

Volatilidade

Dispositivos de armazenamento

- Registradores e *cache*.
 - Contém pouca informação aproveitável.
- Memória de periféricos.
 - Podem possuir informações não disponíveis na memória principal como documentos enviados via fax, imagens exibidas no monitor, etc.
- Memória RAM.
 - Contém informações sobre o sistema operacional e os processos em execução. Pode conter senhas e informações em texto plano que estão cifradas no disco.
- Discos Rígidos e mídias secundárias.
 - Contém a maior parte das informações usadas para extração de evidências.

Alterações no sistema

- As informações obtidas podem não ser confiáveis uma vez que o sistema foi comprometido.
 - Como forma de minimizar o problema, alguns kits de forense para ambientes UNIX contém binários compilados estaticamente dos principais utilitários de sistema.
- Alvos de modificação:

Shell
Comandos do sistema
Bibliotecas dinâmicas
Drivers de dispositivos
Kernel

Dificuldade de detecção

Análise

- A análise deve ser efetuada sobre uma cópia das mídias originais. As mídias originais devem ser devidamente protegidas.
 - A cópia deve ser bit a bit com o intuito de preservar arquivos removidos e outras informações.
- As informações coletadas suas respectivas cópias devem ser autenticadas através de assinaturas criptográficas.
- A análise de dados brutos do disco e da memória é excessivamente lenta.
 - O uso de ferramentas para recuperação de arquivos e dump de processos pode agilizar a análise.
- Um ambiente de teste pode ser preparado para auxiliar o procedimento de análise.
 - O hardware deve ser preferencialmente similar ao hardware do ambiente original.
- Todo o processo deve ser devidamente documentado.

Reconstrução de eventos

- Correlacionamento de *logs*.
- Análise do tráfego da rede (*logs* de roteadores, *firewalls*, ...).
- Histórico do *shell* (quando houver).
- MAC Times.
- Recuperação de arquivos apagados ou análise do dump do disco.
- Análise de artefatos encontrados no sistema.

Modo de operação do atacante

- Entender o modo de operação é útil durante a busca por evidências:
 - Identificação do alvo.
 - Busca por vulnerabilidades.
 - Comprometimento inicial.
 - Aumento de privilégio.
 - Tornar-se "invisível".
 - Reconhecimento do sistema.
 - Instalação de backdoors.
 - Limpeza de rastros.
 - Retorno por um backdoor; inventário e comprometimento de máquinas vizinhas.

Ferramentas para monitoração

- Monitorando mudanças no sistema de arquivos.
 - *Tripwire* (http://www.tripwire.com).
 - Aide (http://www.cs.tut.fi/~rammer/aide.html).
- Centralizando *logs*.
 - syslog-ng (http://www.balabit.hu/en/downloads/syslog-ng).
- Identificação de rootkits.
 - chkrootkit (http://www.chkrootkit.org).
- Registro de conexões.
 - TCPwrapper.

Coletando dados brutos

- *Dump* da memória:
 - dd if /dev/mem of <destino>
 - dd if/dev/kmem of <destino>
 - dd if/dev/rswap of <destino>
- *Dump* nos discos:
 - *dd if* <*dipostivo*> *of* <*destino*>
- Obtendo dados da memória da placa de vídeo:
 - xwd -display :0 -root > screen.xwd
 - xwud -in screen.xwd
- Transferindo informações coletadas através do *Netcat*:
 - Servidor: nc -p <porta> -l > <saída>
 - Cliente: <comando_do_sistema> | nc -w 3 to <porta>

Estado da rede

- Configurações da rede:
 - ifconfig, iwconfig
 - route
 - arp
 - netstat -tupan, lsof -i
- Coletando o tráfego:
 - tcpdump -l -n -e -x -vv -s 1500
 - ethereal

Coletando informações sobre o estado do sistema

• Login de usuários:

- Usuários atualmente logados: w, who
- Últimos logins efetuados: last
- Último acesso de cada usuário: lastlog

Processos:

- Processos atualmente em execução: ps auxeww, ps ealf, ls /proc/
- Últimos comandos executados: lastcomm
- Arquivos abertos: *lsof*

Kernel e módulos:

- Configurações gerais: uname -a
- Módulos carregados: lsmod, cat /proc/modules
- Módulos ocultos: kstat -M (http://www.s0ftpj.org/tools/)

Informações do sistema de arquivos

- MAC Times:
 - Horário de último acesso: ls -altu
 - Tempo de alteração: ls -alt
 - Tempo de mudança nas permissões: ls -altc
- Propriedades de um arquivo:
 - stat <arquivo>
- Registro de todos os arquivos presentes no sistema:
 - find / -type f -print0 / xargs -0 md5sum > <saída>

Análise dos dados coletados

- Buscas nos *dumps* de disco e memória?
 - strings e grep.
 - Podem encontrar informações em blocos marcados como defeituos.
 - Útil para recuperação de trechos de arquivos apagados, em particular, de *logs* apagados.
- Análise de binários suspeitos
 - Tabela de símbolos: nm <binário>, nm -Du <binário>
 - Bibliotecas dinâmicas associadas: ldd <binário>
 - Visualização em hexadecimal: cat <binário> / xxd
 - Chamadas de sistema (em um ambiente de testes): strace < binário >
 - Pausando a execução de um processo: kill -STOP <pid>

Ferramentas para análise

- TCT The Coroner's Toolkit (http://www.porcupine.org/forensics/tct.html):
 - Conjunto de ferramentas para forense.
- TCTUtils (http://www.porcupine.org/forensics/tct.html):
 - Utilitários que provêem funcionalidades extras ao TCP.
- TASK The @stake Sleuth Kit (http://www.sleuthkit.org/):
 - Engloba as funcionalidades do TCT e do TCTUtils para anállise do sistema de arquivos, além de recursos adicionais.
 - Portado para uma série e plataformas.
- AFB Autopsy Forensic Browser (http://www.sleuthkit.org/autopsy):
 - Provê uma interface gráfica para o TASK.

The Coroner's Toolkit (1)

- É composto por quatro partes:
 - grave-robber
 - Automatiza a coleta de evidências com os comandos citados anteriormente.
 - Executa ações adicionais (geração de assinaturas criptográficas, lista com arquivos apagados ainda em uso, históricos de shell, ...).
 - A coleta é feita de acordo com a ordem de volatilidade.
 - mactime
 - Utiliza informações produzidas pelo grave-robber para criar um histórico de arquivos modificados e acessados em um dado intervalo de tempo.
 - lazarus
 - *lazarus*: ferramenta para recuperação de arquivos apagados.
 - *unrm*: efetua *dump* do espaço não alocado no disco.
 - Utilitários
 - Utiliários usados pela ferramenta *grave-roober*.

The Coroner's Toolkit (2)

• Funcionamento do *lazarus*:

- Sistemas de arquivos *unix* tem baixa fragmentação.
- Tenta identificar o tipo de arquivo ao qual pertence um espaço não alocado do disdo de 100 *bytes*.
- Armazena em um arquivo os blocos de dados lidos enquanto o tipo de arquivo identificado n\(\tilde{a}\) o for alterado.
- Não funciona bem com arquivos grandes.

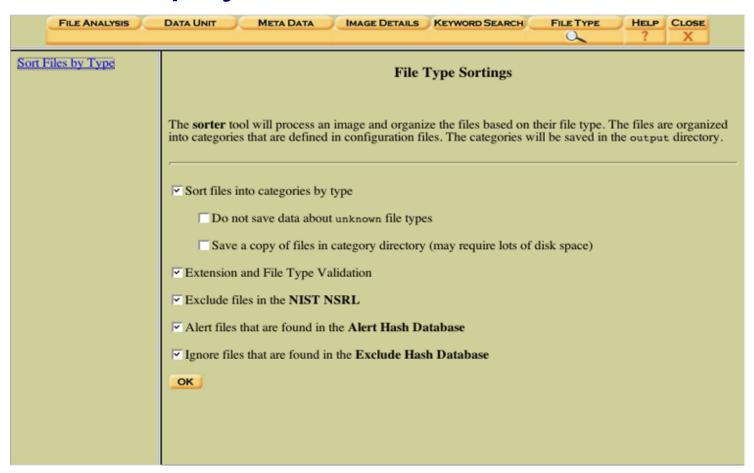
• Exemplos de utilitários:

- pcat: efetua o dump de um processo na memória.
- icat (ou inode-cat): visualiza o conteúdo de um arquivo a partir no número do seu inode. Pode recuperar arquivos apagados ou parte deles.
- ils: lista informações inodes de arquivos removidos.

TCTUtils

• Exemplos de utitários:

- bcat: exibe o conteúdo de um bloco de dados presente no sistema de arquivos.
- blockcalc: mapeia blocos do sistema de arquivos orginal com a imagem gerada pela ferramenta *unrm*.
- fls: lista as entradas de um bloco de dados pertencente a um diretório.
- find_file: tenta encontrar o nome de arquivo associado a um inode.
- find_inode: tenta encontrar o inode que tem alocado um determinado bloco de dados do sistema de arquivos.
- istat: exibe informações sobre um determinado inode.



The @stake Sleuth Kit

- Suporte a sistemas de arquivos de diversos SOs (*BSD*, *Linux*, *Solaris*, *Windows*).
- Exemplos de utilitários:
 - dstat: exibe informações sobre um determinado bloco.
 - fsstat: informações detalhas sobre o sistema de arquivos em uma determinada partição.
 - *icat*: semelhante ao *icat* do TCT.
 - dcat: semelhante ao bcat do TCTUtils.
 - Outras ferramenas com funções similares as exibidas anteriormente

Autopsy Forensic Browser

Outras ferramentas úteis (1)

- LiveCDs:
 - Biatchux Fire (http://biatchux.dmzs.com).
- *DUMP* de sistemas de arquivos FAT e NTFS:
 - EnCase (http://www.guidancesoftware.com).
 - DriveSpy. DriveSpy (http://www.digitalintel.com).
 - Byte Back (http://www.toolsthatwork.com).
- Ferramentas para recuperação de senhas (office, rar, zip, ...):
 - Lostpassword (http://www.lostpassword.com).

Outras ferramentas úteis (2)

- Análise de logs:
 - Netforensics (http://www.netforensics.com).
- Análise de sistemas de arquivos:
 - Foremost tool. (http://foremost.sourceforge.net).
- Visualizador de disco e memória em ambientes windows:
 - Winhex (http://www.winhex.com/).
- Visualizador de processos em Windows 9x:
 - Wintop (http://www.dewassoc.com/support/useful/wintop.htm).

Conclusões

- A Forense computacional é um importante ramo da ciência forense aplicado à coleta de evidências digitais.
- O uso de métodos e procedimentos adequados aumentam a eficiência da coleta, análise e armazenamento de evidências.
- As informações mais voláteis devem ser coletadas primeiro, sendo que não é possível coletar todas as informações presentes em um sistema.
- O sistema operacional fornece diversos mecanismos de contabilidade que podem ser utilizados no processo de coleta de evidências.
- O domínio de ferramentas específicas para forense computacional permite a obtenção de melhores resultados durante a coleta e análise.

Referências

- Anton Chuvakin, Cyrus Peikari. **Security Warrior**. O'Reilly, January, 2004
- Cesar Eduaro Atílio Padrão "ACME!" para análise forense de intrusões em sistemas computacionais.
 - http://www.acmesecurity.org/hp_ng/imagens/download3.jpg
- Dan Farmer, Wietse Venema. **Computer Forensics Analysis Class Handouts**. Agosto, 1999.
 - http://www.trouble.org/forensics/class.html
- Eugene E. Schultz, Russell Shumway. **Incident Response: A Strategic Guide (...)**. Oreilly, November 2001
- Michael G. Noblett et al. Recovering and Examining Computer Forensic Evidence.
 - http://www.fbi.gov/hq/lab/fsc/backissu/oct2000/computer.htm
- RecGeus, P. L., Reis, M. A. Análise forense de intrusões em sistemas computacionais: . Anais do I Seminário Nacional de Perícia em Crimes de Informática. Maceió, 2002.
- Christopher Klaus. Compromissed FAQ
 - http://www.faqs.org/faqs/computer-security/compromise-faq/

Obrigado!

Para entrar em contato e obter mais informações: almir at acmesecurity dot org Key ID: 0x77F86990 arnaldo at acmesecurity dot org Key ID: 0x85A6CA01 adriano at acmesecurity dot org Key ID: 0x3893CD28

Agradecimentos a Cesar Eduardo Atílio Pelo material cedido para a produção deste trabalho

http://www.acmesecurity.org
ACME! Computer Security Research Labs
UNESP – IBILCE
São José do Rio Preto - Brasil