
Soluções	 em	 Segurança	 da	 Informação	

FORTUNA – Sorte e Azar

Dr. Roberto Gallo
SP, 2012-12-08
Diretor Executivo
Cientista Chefe

gallo@kryptus.com

The Problem

The Problem

The Problem

0.01	

0.1	

1	

10	

100	

1000	

Industry	 NASA	

Bug/KL	

Cost	

Attacks

Policies

•  Least privileges

•  TCB minimization

•  Security in Layers

Agenda

•  The Audience
•  The Problem
•  Our Proposals
•  Implementation Results
•  Current and Future Work

The Audience

•  Generally speaking, security professionals
•  More precisely:

–  People managing projects (PMP)
–  People analysing system security
–  People designing secure hardware

•  Problem Importance:
–  The DHS (NSA, DoD, NIST) Cyber Security Roadmap

ranks “Trustworthy Scalable Computing - TSC” the
top 1 security challenge for the next years

–  Proper TSC requires trusted computing bases – TCB
(software + hardware)

The Problem - General View

•  Importance of real HW + SW system
implementations is fully established

•  However, even when ample resources are
employed, this objective is very hard to attain

•  Symptom: “is this system secure?” vs “for
how long will this system remain secure?”

•  The stochastic nature of real system
implementations must not be ignored

•  System examples: DRM enabled devices,
HSM, DRE, Token, Game Console

The Problem – Some Reasons

•  “Performance vs features vs TTM” race gains
more attention than security does, from
Industry

•  Security is a highly interdisciplinary field and
requires a unified view

•  With current systems, complexity is
intractable (even logically, not to mention the
physical, probabilistic and human aspects)
–  Formal proofs for HW + SW logical interactions

shown to be NP-hard or intractable
•  There is NO Unified Security Theory

The Problem – Some Questions

•  How to design and build secure systems?
•  How to measure if a given architecture is

better than others, prior to deployment?
•  How to quickly assess the impact of a

system modification?
•  How to consider the lack of knowledge about

some system characteristics?
•  How to succeed even when no component is

100% trusted?
•  How to consider at the same time physical

and logical aspects?

Our Objective

•  Reduce design hassle of secure hybrid
systems

•  Handle the growing complexity
•  Automate as much as possible the security

analysis by using the design files as input
•  Allow design of trustworthy systems with

faulty components
•  Prevail even when many unknown aspects

are present

Our Contributions – Overview

•  The first framework that deals with early
design stages of hardware-based secure
systems with broad scope

•  A tool that can be applied earliest in the
design cycle of secure systems

•  A probabilistic model, under which some well
know “golden policies” can be proven and
others be challenged

System Example – Crypto Token

System Observations

1.  A secure system can be composed of other systems (or
components);

2.  The security of systems has a probabilistic nature;
3.  Individually insecure (with respect to a given policy)

components can be arranged in the form of a secure
system;

4.  Secure components (with respect to a given policy) may be
arranged into an insecure system;

5.  Ultimately, all components are physical. Logical
components are abstractions represented in a particular
physical component configuration (or state);

6.  There are no complete descriptions of non-trivial practical
systems;

7.  Every component has an associated cost for its
deployment;

8.  Certain (typically local) components are associated with
adversary rewards;

Extracted Properties I

B1. Interaction channel: every subsystem that can
be composed with others has one interaction
channel. This interaction channel may be a logical
abstraction, providing a communication channel.
The channel can be directed or not.
B2. Entropic potential: represents the information
assets that generate benefits for the opponent.
Measured in bits.
B3. Entropic impedance (or resistance to leakage):
quantifies the permeability of components and
interaction channels to entropy. It is given as the
probability that a given entropy amount migrates
in a given timeframe from A to B trough an channel
AB.

Extracted Properties II

B4. Implicit security: components with a
certain set of security policies are subject to
different attacks. Each attack has a different
cost and a different success probability.
B5. Security provided: expresses the ability an
(directional) interaction has of transporting the
implicit security experienced by a component A
to a component B. Together with the implicit
security, it expresses the ``protection
relationship'’.

Models

•  Our observations and properties are used to
produce models where security
characteristics can be explored

•  We present in this paper three models:
–  Two are graph-based:

•  Model 1: Bit leakage
•  Model 2: Adversary path (not shown here)

–  One is based on Decision Theoretic Probabilistic
ProLog - DTProbLog

Graph Model 1 – Bit-Leakage

•  Uses Properties B1, B2, and B3: interaction
channel, entropic potential, and entropic
impedance

•  Let D = (V, A) be a digraph representing a
related system and external agents that
interact with it

•  Each vertex i from V represents a system
component or a principal. Each arc ij from A
represents a interaction channels (B1).

•  Let s be a bit of the secret (B2) which the
system protects and that the adversary aims

Graph Model 1 – Bit-Leakage II

•  Vertex i has probability pvi of knowing s
•  By properties B1 and B3, s leaks from its

container (say i) through the arcs ij with
probability pai,j

•  We are interested in minimizing pvk for the
vertex k that represents the attacker

Probabilities – Model 1

Fig. 3. Definition 1: vertices and relations.

“priv key” to the opponent. The same graphical model allows
for immediate intervention: removing link between “key mngt
alg” and “priv key” reduces risks. This modification conforms
to the “least privileges policy”. Formalizing all this, we have

Definition 1 (Model 1): Let D = (V,A) be a digraph
representing a related system and external agents that interact
with it. V is the set of vertices representing the system
constituents and external stakeholders (users, opponents). Let
A be the set of arcs representing the interaction channel (B1).
Let s be a bit of the secret S of interest to the opponent (B2)
and which the system protects. By properties B1 and B3, we
observe that s leaks from its container through the arcs with
probability pa

i,j

(the probability that s transits from vertex
i to j through arc ij), so that vertex j now has probability
pv

j

of knowing s. We are interested in minimizing pv for the
vertex that represents the attacker.

In the following we consider all probabilistic events inde-
pendent. Given Definition 1, pv

j

in figure 3 is given by:

pv

j

= pa

i,j

⇥ pv

i

, (1)

where pa

i,j

is given. When j has multiple edges or incident
arcs (Figure 3), it suffices that s leaks through only one arc;
so, for each vertex j we can write:

pv

j

= 1�
Y

i2N

�
D (j)

(1� pv

i

⇥ pa

i,j

), (2)

where N

�
D

(j) is the set of all in-neighbors of j. For all n
vertices of D we can write the same equality with a maximum
of n variables in pv

i

, which provides us with a system of
degree n totally determined. For the vertex k that contains s,
pv

k

is trivially 1.
Figure 4 shows the same architecture of Figure 1. This

digraph is a re-orientation of a subgraph of Figure 2, when
applying properties B1, B4, and B5. This digraph represents
the “protection” relationship and can be read alternatively as
“the safety of vertex j depends on vertex i”. We observe that
the protection relations begin at the physical components and
end at the logical ones, respecting the natural concept of “con-
tained” - logical components are contained in one (or more)
physical component(s). Interestingly, the protection relation
has wider scope when compared with the entropy graph, as it
can model different types of security objetives (e.g. integrity,
availability), not only confidentiality. The representation of
Figure 4 is related to Schneier‘s attack trees [11].

Fig. 4. Protection (or security depends) relationship. Graph representation
of the same token architecture but obtained applying observations 1 to 8 and
properties B1, B4 and B5.

The graph of Figure 4 can be either split into a set of
graphs, each for a security objective, or annotated so that it
correctly captures security dependencies. In either case, it may
require designer intervention to qualify the relations, especially
regarding logical conditions (and, or)8. Obviously, for large
systems, the required annotation amount may be impeditive
and hinder the benefits of the graph analysis. For this reason, in
Section III-D we present an alternative based on DTProbLog,
a probabilistic derivation of the Prolog language. Now, we
formalize:

Definition 2: Let D = (V,A) be a connected digraph
representing part of a system. V is the set of vertices repre-
senting components that establish relations of protection. By
Obs8, for each vertex v of V there is a cost e

v

(financial,
work, performance) associated with the use of v. Let A be
the set of arcs representing the protection relationships (or
security dependence) via a given interaction channel. By B4,
for each arc uv of A there is a cost c

uv

associated with a
given probability of success pp

uv

. The arcs incident on v

can be composed in and/or form. Let C be a subset of V

representing the system’s CSP. By Obs9, to each vertex v of
C is associated a gain g

v

. We are interested in making the best
(chance of success) attack plan which more expensive than the
expected gain for the adversary.

In the following we consider all probabilistic events in-
dependent. Given Definition 2, the expected probability of
success of an attack on vertex j of Figure 5 is given by
pp

j

= p

ij

, while the expected cost of a successful attack on
j via arc ij is given by:

e

j

= e

ij

=
f(p

ij

)

p

ij

+ e

i

, (3)

where p

ij

and f(p
ij

) are given and e

i

is the attack cost
i. When multiple protection relations are established, the
cost is given by the smallest attack value among all possi-
bilities (incident arcs). The problem is therefore related to
the ”shortest-path problem”, but with some changes: when
an “and” relationship is established (x sign in the figure,)

8e. g. the security of component A depends on component B (and/or) C

Fig. 3. Definition 1: vertices and relations.

“priv key” to the opponent. The same graphical model allows
for immediate intervention: removing link between “key mngt
alg” and “priv key” reduces risks. This modification conforms
to the “least privileges policy”. Formalizing all this, we have

Definition 1 (Model 1): Let D = (V,A) be a digraph
representing a related system and external agents that interact
with it. V is the set of vertices representing the system
constituents and external stakeholders (users, opponents). Let
A be the set of arcs representing the interaction channel (B1).
Let s be a bit of the secret S of interest to the opponent (B2)
and which the system protects. By properties B1 and B3, we
observe that s leaks from its container through the arcs with
probability pa

i,j

(the probability that s transits from vertex
i to j through arc ij), so that vertex j now has probability
pv

j

of knowing s. We are interested in minimizing pv for the
vertex that represents the attacker.

In the following we consider all probabilistic events inde-
pendent. Given Definition 1, pv

j

in figure 3 is given by:

pv

j

= pa

i,j

⇥ pv

i

, (1)

where pa

i,j

is given. When j has multiple edges or incident
arcs (Figure 3), it suffices that s leaks through only one arc;
so, for each vertex j we can write:

pv

j

= 1�
Y

i2N

�
D (j)

(1� pv

i

⇥ pa

i,j

), (2)

where N

�
D

(j) is the set of all in-neighbors of j. For all n
vertices of D we can write the same equality with a maximum
of n variables in pv

i

, which provides us with a system of
degree n totally determined. For the vertex k that contains s,
pv

k

is trivially 1.
Figure 4 shows the same architecture of Figure 1. This

digraph is a re-orientation of a subgraph of Figure 2, when
applying properties B1, B4, and B5. This digraph represents
the “protection” relationship and can be read alternatively as
“the safety of vertex j depends on vertex i”. We observe that
the protection relations begin at the physical components and
end at the logical ones, respecting the natural concept of “con-
tained” - logical components are contained in one (or more)
physical component(s). Interestingly, the protection relation
has wider scope when compared with the entropy graph, as it
can model different types of security objetives (e.g. integrity,
availability), not only confidentiality. The representation of
Figure 4 is related to Schneier‘s attack trees [11].

Fig. 4. Protection (or security depends) relationship. Graph representation
of the same token architecture but obtained applying observations 1 to 8 and
properties B1, B4 and B5.

The graph of Figure 4 can be either split into a set of
graphs, each for a security objective, or annotated so that it
correctly captures security dependencies. In either case, it may
require designer intervention to qualify the relations, especially
regarding logical conditions (and, or)8. Obviously, for large
systems, the required annotation amount may be impeditive
and hinder the benefits of the graph analysis. For this reason, in
Section III-D we present an alternative based on DTProbLog,
a probabilistic derivation of the Prolog language. Now, we
formalize:

Definition 2: Let D = (V,A) be a connected digraph
representing part of a system. V is the set of vertices repre-
senting components that establish relations of protection. By
Obs8, for each vertex v of V there is a cost e

v

(financial,
work, performance) associated with the use of v. Let A be
the set of arcs representing the protection relationships (or
security dependence) via a given interaction channel. By B4,
for each arc uv of A there is a cost c

uv

associated with a
given probability of success pp

uv

. The arcs incident on v

can be composed in and/or form. Let C be a subset of V

representing the system’s CSP. By Obs9, to each vertex v of
C is associated a gain g

v

. We are interested in making the best
(chance of success) attack plan which more expensive than the
expected gain for the adversary.

In the following we consider all probabilistic events in-
dependent. Given Definition 2, the expected probability of
success of an attack on vertex j of Figure 5 is given by
pp

j

= p

ij

, while the expected cost of a successful attack on
j via arc ij is given by:

e

j

= e

ij

=
f(p

ij

)

p

ij

+ e

i

, (3)

where p

ij

and f(p
ij

) are given and e

i

is the attack cost
i. When multiple protection relations are established, the
cost is given by the smallest attack value among all possi-
bilities (incident arcs). The problem is therefore related to
the ”shortest-path problem”, but with some changes: when
an “and” relationship is established (x sign in the figure,)

8e. g. the security of component A depends on component B (and/or) C

Graph Model 2 – Attack Path

•  Uses Properties B1, B4, and B5: implicit
security, security provided

•  Let D = (V, A) be a connected digraph
representing part of a system.

•  Each vertex i of V represents a system
component that can establish relations of
protection. To each vertex i there is a related
cost ev. Each arc ij of A represents protection
relationships.

Graph Model 2 – Attack Path

•  By B4, for each arc ij of A there is a violation
cost cij associated with a given probability of
succesful attack ppij.

•  The arcs incident on j can be composed in
and/or form.

•  Let C be a subset of V representing the
system's CSP. To each vertex j of C is
associated a gain gj.

•  We are interested in making the best attack
plan more expensive than the expected gain
for the adversary.

Probabilities and Costs – Model 2

Fig. 3. Definition 1: vertices and relations.

“priv key” to the opponent. The same graphical model allows
for immediate intervention: removing link between “key mngt
alg” and “priv key” reduces risks. This modification conforms
to the “least privileges policy”. Formalizing all this, we have

Definition 1 (Model 1): Let D = (V,A) be a digraph
representing a related system and external agents that interact
with it. V is the set of vertices representing the system
constituents and external stakeholders (users, opponents). Let
A be the set of arcs representing the interaction channel (B1).
Let s be a bit of the secret S of interest to the opponent (B2)
and which the system protects. By properties B1 and B3, we
observe that s leaks from its container through the arcs with
probability pa

i,j

(the probability that s transits from vertex
i to j through arc ij), so that vertex j now has probability
pv

j

of knowing s. We are interested in minimizing pv for the
vertex that represents the attacker.

In the following we consider all probabilistic events inde-
pendent. Given Definition 1, pv

j

in figure 3 is given by:

pv

j

= pa

I,j

⇥ pv

i

, (1)

where pa

I,j

is given. When j has multiple edges or incident
arcs (Figure 3), it suffices that s leaks through only one arc;
so, for each vertex j we can write:

pv

j

= 1�
Y

i2N

�
D (j)

(1� pv

i

⇥ pa

I,j

), (2)

where N

�
D

(j) is the set of all in-neighbors of j. For all n
vertices of D we can write the same equality with a maximum
of n variables in pv

i

, which provides us with a system of
degree n totally determined. For the vertex k that contains s,
pv

k

is trivially 1.
Figure 4 shows the same architecture of Figure 1. This

digraph is a re-orientation of a subgraph of Figure 2, when
applying properties B1, B4, and B5. This digraph represents
the “protection” relationship and can be read alternatively as
“the safety of vertex j depends on vertex i”. We observe that
the protection relations begin at the physical components and
end at the logical ones, respecting the natural concept of “con-
tained” - logical components are contained in one (or more)
physical component(s). Interestingly, the protection relation
has wider scope when compared with the entropy graph, as it
can model different types of security objetives (e.g. integrity,
availability), not only confidentiality. The representation of
Figure 4 is related to Schneier‘s attack trees [11].

Fig. 4. Protection (or security depends) relationship. Graph representation
of the same token architecture but obtained applying observations 1 to 8 and
properties B1, B4 and B5.

The graph of Figure 4 can be either split into a set of
graphs, each for a security objective, or annotated so that it
correctly captures security dependencies. In either case, it may
require designer intervention to qualify the relations, especially
regarding logical conditions (and, or)8. Obviously, for large
systems, the required annotation amount may be impeditive
and hinder the benefits of the graph analysis. For this reason, in
Section III-D we present an alternative based on DTProbLog,
a probabilistic derivation of the Prolog language. Now, we
formalize:

Definition 2: Let D = (V,A) be a connected digraph
representing part of a system. V is the set of vertices repre-
senting components that establish relations of protection. By
Obs8, for each vertex v of V there is a cost e

v

(financial,
work, performance) associated with the use of v. Let A be
the set of arcs representing the protection relationships (or
security dependence) via a given interaction channel. By B4,
for each arc uv of A there is a cost c

uv

associated with a
given probability of success pp

uv

. The arcs incident on v

can be composed in and/or form. Let C be a subset of V

representing the system’s CSP. By Obs9, to each vertex v of
C is associated a gain g

v

. We are interested in making the best
(chance of success) attack plan which more expensive than the
expected gain for the adversary.

In the following we consider all probabilistic events in-
dependent. Given Definition 2, the expected probability of
success of an attack on vertex j of Figure 5 is given by
pp

j

= p

ij

, while the expected cost of a successful attack on
j via arc ij is given by:

e

j

= e

ij

=
f(p

ij

)

p

ij

+ e

i

, (3)

where p

ij

and f(p
ij

) are given and e

i

is the attack cost
i. When multiple protection relations are established, the
cost is given by the smallest attack value among all possi-
bilities (incident arcs). The problem is therefore related to
the ”shortest-path problem”, but with some changes: when
an “and” relationship is established (x sign in the figure,)

8e. g. the security of component A depends on component B (and/or) C

Fig. 5. Definition 2: vertices and relations.

all “shortest paths” must be accounted. We can write the
relationship for each vertex in the graph as:

e

j

= min

0

@
X

x2X

e

xj

,

X

y2Y

e

yj

, ...,

X

z2Z

e

zj

1

A
, (4)

where X , Y and Z represent sets of arcs grouped around
the “and” notation and N

�
D

(j) =
S

X

S
Y

S
, ...

S
Z and

↵ = X

T
Y,_X,Y . Now, the probability that a given vertex

is successfully attacked is given by:

pp

j

= 1�
Y

X2N

�
D

1�

Y

i2X

p

ij

!
. (5)

B. Graph Model Analysis and Results
The two models obtained from Obs1 to 8 and Properties

1 to 5 allow not only for automatic security evaluation and
design insights but it also permits theoretical exploration. In
this section we prove two well-accepted security policies under
our model.

Policy 1: Grant to system principals the least privileges
necessary to perform their jobs. Explanation: this policy states
that, in order to improve security, system principals, such
as users and processes, must be granted access only to the
resources needed for the task. That means restrictions on
accessed data (user, system), cryptographic keys, processing
and storage resources.

Theorem 1: Policy 1 either does not affect, or it improves
the overall system security regarding confidentiality CSPs.

Proof: We use “Definition 1”. The principals are represented
by vertices that relate to (access) confidential resources (ver-
tices that contain the s bit) via one or more arcs (either directly
or chained). We want to minimize pv

j

of equation 2 for the
vertex that represents the adversary. Thus, it suffices to show
that any arc uv removal never make pv

j

larger. We have two
cases based on whether the arc uv is present in the equation
for vertex j or not. If it is, an arc removal implies that the
product of equation 2 has one less iteration. Since each term
1 � pv

i

⇥ pa

i,j

is always equal to or smaller than 1, this
removal either does not change the total value of the product
or increases it. That means that the value for pv

j

in equation 2
either diminishes or does not change. This proves the first case.
In the second case, arc ik is present in one of the other n� 1
equations. Here we have two subcases based on whether pv

j

can be written in terms of pv
k

, the equation that contains arc
ik. If not, it trivially does not affect security. Otherwise, that

means that some pv

l

(in the path between j and k) will have
pv

k

as one of its terms in equation 2. So, we note that if pv
k

is
reduced, the inner term of the product will increase as the total
product, minimizing pv

l

. Since we assumed that is possible to
write pv

j

in terms pv

l

(pv
k

), this ends the proof. ⌅
Before we continue, we add a further observation (Obs9)

regarding fragilities. It is well accepted that software defects
are a matter of bug density. Current industry numbers for
delivered code estimate around five defects per kilo-line-of-
code (kloc) with a cost of USD5 per line. Even extremely
debugged software, as the space shuttle flying software has a
density of about 0.004 bugs/kloc with a cost of USD850 per
line of code [12]. Thus, it is a tempting idea that reducing the
lines of code, while preserving the functionality, will improve
security.

Policy 2: Minimize the size of the Trusted Computing Base.
Explanation: The trusted computing base (TCB) is the set of
components that provide secure services or protects system
principals. This policy states that, in order to improve the
overall system security, the components that constitute the
TCB shall be reduced.

Theorem 2: Policy 2 does not always hold for integrity
CSPs.

Proof: We use “Definition 2”. It suffices to show that we can
arbitrarily increase system security by increasing the size of
the TCB. The size of the TCB in Definition 2 grows whenever
the number of lines of code in V grows or when a new
protective component (vertex) is added. Let u be this new
vertex and j the vertex to be protected. If arc uj exists, then,
by Definition 2, it can either be associated in a “and” or a
“or” relation. If it is associated in a “and” fashion, then, by
equation 5, some X ⇢ N

�
D

will be added with in-arc uj, thus
making the innermost product smaller and, as a consequence,
total probability pp

j

also smaller. This concludes the proof. ⌅
This negative result on Policy 2 asks for a more precise

definition for TCB recommendation. We propose a more
restrictive policy:

Policy 2 Reviewed: Given a system architecture, minimize
the size of its individual components.

This policy is trivially supported by equation 5 and Obs9.

C. Other Considerations

1) Independence of Events: Although Observations 1 to
8, Properties 1 to 5 and Definitions 1 and 2 do not require
independence of events, while writing the respective equations
we limited ourselves to this case. We claim that this has limited
effects on the previous proofs and the quantitative assessments
obtained from these equations. In [9] it is shown that the main
cause of correlate weaknesses is the gained knowledge by the
adversary. In our model, we can easily compensate this fact
by the addition of a further component representing the “lack
of adversary knowledge” on a given weakness class. This is
consistent with concept of obfuscation.

2) The Cost Function c = f(p): The behavior of the
function that maps probability of successful attacks to costs

Fig. 5. Definition 2: vertices and relations.

all “shortest paths” must be accounted. We can write the
relationship for each vertex in the graph as:

e

j

= min

0

@
X

x2X

e

xj

,

X

y2Y

e

yj

, ...,

X

z2Z

e

zj

1

A
, (4)

where X , Y and Z represent sets of arcs grouped around
the “and” notation and N

�
D

(j) =
S

X

S
Y

S
, ...

S
Z and

↵ = X

T
Y,_X,Y . Now, the probability that a given vertex

is successfully attacked is given by:

pp

j

= 1�
Y

X2N

�
D

1�

Y

i2X

p

ij

!
. (5)

B. Graph Model Analysis and Results
The two models obtained from Obs1 to 8 and Properties

1 to 5 allow not only for automatic security evaluation and
design insights but it also permits theoretical exploration. In
this section we prove two well-accepted security policies under
our model.

Policy 1: Grant to system principals the least privileges
necessary to perform their jobs. Explanation: this policy states
that, in order to improve security, system principals, such
as users and processes, must be granted access only to the
resources needed for the task. That means restrictions on
accessed data (user, system), cryptographic keys, processing
and storage resources.

Theorem 1: Policy 1 either does not affect, or it improves
the overall system security regarding confidentiality CSPs.

Proof: We use “Definition 1”. The principals are represented
by vertices that relate to (access) confidential resources (ver-
tices that contain the s bit) via one or more arcs (either directly
or chained). We want to minimize pv

j

of equation 2 for the
vertex that represents the adversary. Thus, it suffices to show
that any arc uv removal never make pv

j

larger. We have two
cases based on whether the arc uv is present in the equation
for vertex j or not. If it is, an arc removal implies that the
product of equation 2 has one less iteration. Since each term
1 � pv

i

⇥ pa

i,j

is always equal to or smaller than 1, this
removal either does not change the total value of the product
or increases it. That means that the value for pv

j

in equation 2
either diminishes or does not change. This proves the first case.
In the second case, arc ik is present in one of the other n� 1
equations. Here we have two subcases based on whether pv

j

can be written in terms of pv
k

, the equation that contains arc
ik. If not, it trivially does not affect security. Otherwise, that

means that some pv

l

(in the path between j and k) will have
pv

k

as one of its terms in equation 2. So, we note that if pv
k

is
reduced, the inner term of the product will increase as the total
product, minimizing pv

l

. Since we assumed that is possible to
write pv

j

in terms pv

l

(pv
k

), this ends the proof. ⌅
Before we continue, we add a further observation (Obs9)

regarding fragilities. It is well accepted that software defects
are a matter of bug density. Current industry numbers for
delivered code estimate around five defects per kilo-line-of-
code (kloc) with a cost of USD5 per line. Even extremely
debugged software, as the space shuttle flying software has a
density of about 0.004 bugs/kloc with a cost of USD850 per
line of code [12]. Thus, it is a tempting idea that reducing the
lines of code, while preserving the functionality, will improve
security.

Policy 2: Minimize the size of the Trusted Computing Base.
Explanation: The trusted computing base (TCB) is the set of
components that provide secure services or protects system
principals. This policy states that, in order to improve the
overall system security, the components that constitute the
TCB shall be reduced.

Theorem 2: Policy 2 does not always hold for integrity
CSPs.

Proof: We use “Definition 2”. It suffices to show that we can
arbitrarily increase system security by increasing the size of
the TCB. The size of the TCB in Definition 2 grows whenever
the number of lines of code in V grows or when a new
protective component (vertex) is added. Let u be this new
vertex and j the vertex to be protected. If arc uj exists, then,
by Definition 2, it can either be associated in a “and” or a
“or” relation. If it is associated in a “and” fashion, then, by
equation 5, some X ⇢ N

�
D

will be added with in-arc uj, thus
making the innermost product smaller and, as a consequence,
total probability pp

j

also smaller. This concludes the proof. ⌅
This negative result on Policy 2 asks for a more precise

definition for TCB recommendation. We propose a more
restrictive policy:

Policy 2 Reviewed: Given a system architecture, minimize
the size of its individual components.

This policy is trivially supported by equation 5 and Obs9.

C. Other Considerations

1) Independence of Events: Although Observations 1 to
8, Properties 1 to 5 and Definitions 1 and 2 do not require
independence of events, while writing the respective equations
we limited ourselves to this case. We claim that this has limited
effects on the previous proofs and the quantitative assessments
obtained from these equations. In [9] it is shown that the main
cause of correlate weaknesses is the gained knowledge by the
adversary. In our model, we can easily compensate this fact
by the addition of a further component representing the “lack
of adversary knowledge” on a given weakness class. This is
consistent with concept of obfuscation.

2) The Cost Function c = f(p): The behavior of the
function that maps probability of successful attacks to costs

Model Results – Policy 1

•  Policy 1: “Grant system principals the least
privileges necessary to perform their jobs”

•  Theorem 1: Policy 1 either does not affect, or
it improves the overall system security
regarding confidentiality CSPs

•  Proof 1: Comes from equation for pvj in
model 1 by arc removal where j is the vertex
that represents the adversary

Model Results – Policy 2

•  Policy 2: “Minimize the size of the Trusted
Computing Base”

•  Theorem 2: Policy 2 does not always hold for
integrity CSPs

•  Proof 2: We use model 2. It suffices to show
that we can arbitrarily increase system
security by increasing the size of the TCB

DTProbLog Model

•  Graph model limitations motivated the use of
alternative models
–  Too many annotations for richer descriptions
–  Limits representation for automation
–  Difficult to represent conditional probabilities

•  We chose Decision Theoretic Probabilistic
ProLog language
–  DTProbLog is a recent extension to ProbLog

DTProbLog – Some Features

•  Probabilistic facts and queries in KB:
–  e.g. 0.9: protects_directed (J, I).

•  Optimization target (or decisions):
–  e.g. ? :: attacked(C) :- component(C).

•  Utility functions (or costs and gains):
–  e.g. break_policy(C) => - 5 :- component(C).

•  Because ProLog is expressive, it allowed us
to describe all B1..B5 properties

FORTUNA Tool Architecture

Main Data Components

•  Model Rules (MB):
–  Encodes variations of models 1 and 2
–  Supporting tools (e.g. traversing rules, SP calculation,

cost adding…)
•  Knowledge Base (KB):

–  Encodes best current values for costs, bug density,
probabilities

–  Initially with industry’s defects/kloc metric
•  System Description (SD):

–  Contains the system description
–  Either from user input or “Import Filter”

Example Query

!
!
!
?- dtproblog_solve(Strategy,ExpectedGain).!
ExpectedGain = 17.12121,!
Strategy = [attacked(coating),!

!attacked(die),attacked(priv_key)] !

Tool Case Usage

•  We successfully employed FORTUNA during
the development of a Cryptographic Secure
Processor (SCUP)

•  FORTUNA allowed 4x faster security design
reviews, automatic analysis and cost
reduction.

•  Tool guided important architectural
improvements

SCUP – Early Design

?- problog_max(path(adversary,master_key),
 Prob, Strategy).

Strategy = [attacked(usb_ctrl),
 attacked(usb_stack),
 attacked(running_bin),
 attacked(master_key)]

Prob = 0.04809
!

SCUP – Final Design

•  Evolved to a Multi-core Asymmetric
Processor

•  Motivated a second core with minimal
software stack

•  Motivated the HW Firewall

Conclusion

•  FORTUNA brings both practical and
theoretical contributions for hardware-based
systems’ design

•  Models could be used to prove (or challenge)
some golden rule heuristics

•  The tool was used in the design of a
Cryptographic Secure Processor, easing the
development process

Current and Future Work

•  Improve KB precision through usage data
feedback

•  Improve MD with new models from properties
B1…B5

•  Develop new CAD plugins to make the target
system description even faster

•  Adjust model’s equations to directly support
conditional probability (correlation)

Thank You!

Ques@ons?	
gallo@kryptus.com	
gallo@ic.unicamp.br	

