kryptus‘}‘

Solucdes em Seguranca da Informacao

FORTUNA — Sorte e Azar

Dr. Roberto Gallo
SP, 2012-12-08

Diretor Executivo

Cientista Chefe
gallo@kryptus.com



kryptus’}‘
Th
e

o
W

) ()
\\\\\\ \\\,,«\\“
\\\\\\\\\\\\\\\ W
\\\\\\\\\\\




kryptus’}‘ The Problem




kryptus’}‘ The Problem

1000

100 -

10 - M Bug/KL
M Cost

0.1

0.01 | .
Industry NASA



kryptus’}‘ Attacks

Process Address Space

OXFFFF | Top of Stack

Stack Return Address String

Growth Canary Word Growth
Local Variables ...

V buffer

0x0000




kryptus’}‘ Policies

* Least privileges

« TCB minimization

« Security in Layers




ryptus ¢ Agenda

The Audience

The Problem

Our Proposals
Implementation Results
Current and Future Work



kryptus‘}’ The Audience

* Generally speaking, security professionals

* More precisely:
— People managing projects (PMP)
— People analysing system security
— People designing secure hardware

* Problem Importance:

— The DHS (NSA, DoD, NIST) Cyber Security Roadmap
ranks “Trustworthy Scalable Computing - TSC” the
top 1 security challenge for the next years

— Proper TSC requires trusted computing bases — TCB
(software + hardware)



kryptus’}. The Problem - General View

* Importance of real HW + SW system
implementations is fully established

« However, even when ample resources are
employed, this objective is very hard to attain

« Symptom: “is this system secure?” vs “for
how long will this system remain secure?”

 The stochastic nature of real system
implementations must not be ignored

« System examples: DRM enabled devices,
HSM, DRE, Token, Game Console



kryptus <" The Problem — Some Reasons

« “Performance vs features vs TTM” race gains
more attention than security does, from
Industry

« Security is a highly interdisciplinary field and
requires a unified view

* With current systems, complexity is
intractable (even logically, not to mention the
physical, probabilistic and human aspects)

— Formal proofs for HW + SW logical interactions
shown to be NP-hard or intractable

* There is NO Unified Security Theory



kryptus <" The Problem — Some Questions

 How to design and build secure systems?

- How to measure if a given architecture is
better than others, prior to deployment?

 How to quickly assess the impact of a
system modification?

 How to consider the lack of knowledge about
some system characteristics?

« How to succeed even when no component is
100% trusted?

 How to consider at the same time physical
and logical aspects?



ryptus ¢ Our Obijective

* Reduce design hassle of secure hybrid
systems

- Handle the growing complexity

- Automate as much as possible the security
analysis by using the design files as input

* Allow design of trustworthy systems with
faulty components

* Prevail even when many unknown aspects
are present



kryptus‘}‘ Our Contributions — Overview

* The first framework that deals with early
design stages of hardware-based secure
systems with broad scope

« A tool that can be applied earliest in the
design cycle of secure systems

* A probabilistic model, under which some well
know “golden policies” can be proven and
others be challenged



TRNG RNG test private key/
D | key mngt | [ e m! | cryptiib }
= | | coating algorithm yp i ic-die
usb usSB uSB
“Cpus "Il comm control : 7 PIN hash /
power * *




ryptus <" System Observations

w N

A secure system can be composed of other systems (or
components);

The security of systems has a probabilistic nature;

Individually insecure (with respect to a given policy)
components can be arranged in the form of a secure
system;

Secure components (with respect to a given policy) may be
arranged into an insecure system;

Ultimately, all components are physical. Logical
components are abstractions represented in a particular
physical component configuration (or state);

There are no complete descriptions of non-trivial practical
systems;

Every component has an associated cost for its
deployment;

Certain (typically local) components are associated with
adversary rewards;



ryptus Extracted Properties |

B1. Interaction channel: every subsystem that can
be composed with others has one interaction
channel. This interaction channel may be a logical
abstraction, providing a communication channel.
The channel can be directed or not.

B2. Entropic potential: represents the information

assets that generate benefits for the opponent.
Measured in bits.

B3. Entropic impedance (or resistance to leakage):
quantifies the permeability of components and
interaction channels to entropy. It is given as the
probability that a given entropy amount migrates

K]Ba given timeframe from A to B trough an channel



ryptus ¢ Extracted Properties |l

B4. Implicit security: components with a
certain set of security policies are subject to
different attacks. Each attack has a different
cost and a different success probability.

BS5. Security provided expresses the ability an
(directional) interaction has of transporting the
implicit security experienced by a component A
to a component B. Together with the implicit
security, it expresses the protection
relationship”.



kryptus‘}' Models

* Our observations and properties are used to
produce models where security
characteristics can be explored

 We present in this paper three models:

— Two are graph-based:
« Model 1: Bit leakage
* Model 2: Adversary path (not shown here)
— One is based on Decision Theoretic Probabilistic
ProLog - DTProbLog



ryptus ¢ Graph Model 1 — Bit-Leakage

 Uses Properties B1, B2, and B3: interaction
channel, entropic potential, and entropic
impedance

 Let D =(V, A) be a digraph representing a
related system and external agents that
interact with it

 Each vertex i from V represents a system
component or a principal. Each arc ij from A
represents a interaction channels (B1).

* Let s be a bit of the secret (B2) which the
system protects and that the adversary aims



ryptus ¢ Graph Model 1 — Bit-Leakage ||

* Vertex i has probability pv; of knowing s

* By properties B1 and B3, s leaks from its
container (say i) through the arcs jj with
probability pa;;

* We are interested in minimizing pv, for the
vertex k that represents the attacker



kryptus‘}'




RNG test 14-\17 private key /

cryptlib }

ic-die

\7/ PIN hash /

TRNG
Q key mngt H
4 coating algorithm
usb | usB usB )
bus comm control
power * *

PIN hash




ryptus ¢ Graph Model 2 — Attack Path

 Uses Properties B1, B4, and B5: implicit
security, security provided

- Let D=(V, A) be a connected digraph
representing part of a system.

 Each vertex i of V represents a system
component that can establish relations of
protection. To each vertex i/ there is a related
cost e,. Each arc /j of A represents protection

relationships.



ryptus ¢ Graph Model 2 — Attack Path

* By B4, for each arc ij of A there is a violation
cost c; associated with a given probability of
succesful attack pp;.

 The arcs incident on j can be composed in
and/or form.

* Let C be a subset of V representing the
system's CSP. To each vertex jof Cis
associated a gain g..

 We are interested in making the best attack
plan more expensive than the expected gain
for the adversary.



kryptus‘}’




private key

I

-4 | cryptlib }

ic-die

TRNG RNG test
8 key mngt
- coating algorithm
usb | USB USB
bus comm control




ryptus ¢ Model Results — Policy 1

* Policy 1: “Grant system principals the least
privileges necessary to perform their jobs”

- Theorem 1: Policy 1 either does not affect, or
it improves the overall system security
regarding confidentiality CSPs

* Proof 1: Comes from equation for pv;in
model 1 by arc removal where j is the vertex
that represents the adversary



ryptus ¢ Model Results — Policy 2

* Policy 2: “Minimize the size of the Trusted
Computing Base”

 Theorem 2: Policy 2 does not always hold for
integrity CSPs

* Proof 2: We use model 2. It suffices to show

that we can arbitrarily increase system
security by increasing the size of the TCB



ryptus ¢ DTProbLog Model

« Graph model limitations motivated the use of
alternative models
— Too many annotations for richer descriptions
— Limits representation for automation
— Difficult to represent conditional probabilities

* We chose Decision Theoretic Probabilistic
ProLog language
— DTProbLog is a recent extension to ProbLog



ryptus <" DTProbLog — Some Features

Probabilistic facts and queries in KB:

— e.g. 0.9: protects_directed (J, 1).

Optimization target (or decisions):

— e.g. 7 :: attacked(C) :- component(C).

Utility functions (or costs and gains):

— e.g. break_policy(C) => - 5 :- component(C).
Because ProlLog is expressive, it allowed us
to describe all B1..B5 properties



Main

DTProblLog Pre- : Import User
: Editor ,
engine Processor Filter || Console
A

KB (.pro) [[ MD (pro) || 5 Dessrip- || Bxtqina Fle




ryptus Main Data Components

. Model Rules (MB):

— Encodes variations of models 1 and 2

— Supporting tools (e.g. traversing rules, SP calculation,
cost adding...)

 Knowledge Base (KB):

— Encodes best current values for costs, bug density,
probabilities

— Initially with industry’s defects/kloc metric
» System Description (SD):

— Contains the system description

— Either from user input or “Import Filter”



ryptus ¢ Example Query

?- dtproblog solve(Strategy,ExpectedGain).

ExpectedGain = 17.12121,

Strategy = [attacked(coating),
attacked(die) ,attacked(priv_key)]



ryptus Tool Case Usage

 We successfully employed FORTUNA during
the development of a Cryptographic Secure
Processor (SCUP)

« FORTUNA allowed 4x faster security design

reviews, automatic analysis and cost
reduction.

* Tool guided important architectural
improvements



core mem mem RAM
FPU ibh |-| trl 4P| (enc data)
MMU cipher ctr (enc bin)

}‘ t ic die

AMBA BUS

2 ¢ N

ROM
ma:ter ch:tSr? f'::?lh 4P| (enc data)
Yy (enc bin)

packing




RAM
AC usB mem mem
FPU ctrl ||enc,auth [ ctn [T (jgf;agti:)
MMU i’
¢ i i ic die
e
5
AMBA BUS HW Firewall | | Z.
i ¢ i
m.key ;
iROM \ ROM
'_ | sc |4 H\(/:\LIJW f::atilh 4P enc,auth
IRAM_ [V (data, bin)

to a Multi-core Asymmetric

Processor

 Motivated a second core with minimal
software stack

 Motivated the HW Firewall




kryptus <" Conclusion

« FORTUNA brings both practical and
theoretical contributions for hardware-based

systems’ design
* Models could be used to prove (or challenge)
some golden rule heuristics

 The tool was used in the design of a
Cryptographic Secure Processor, easing the
development process



kryptus’}. Current and Future Work

* Improve KB precision through usage data
feedback

* Improve MD with new models from properties
B1...B5

* Develop new CAD plugins to make the target
system description even faster

* Adjust model’s equations to directly support
conditional probability (correlation)



Thank Youl!

Questions?
gallo@kryptus.com
gallo@ic.unicamp.br



