
ALGORITHM
ROLLOVER ON .BR

Introduction

Introduction
● .br signed since 2007
● 128 child zones (com.br, net.br, org.br, …)
● RSA-SHA1
● 2 KSK rollovers (2010, 2015)

○ Key size increased (1536bit)

Motivation
● Improve security

○ ECDSA (Elliptic Curve Digital Signature Algorithm)
● Reduce DNS response size

○ RRSIGs and DNSKEYS: 60% smaller
○ Less network usage
○ Less TCP fallback

Motivation
● Complete renovation of DNS provisioning system

○ Previous one dates back from 2004
○ C++

■ Maintainability issues
■ Deficiencies in memory management

○ Moving to Go

Dilemma: Conservative vs Liberal
Conservative
● RFC 4035, section 2.2:
“There MUST be an RRSIG for each RRset using at
least one DNSKEY of each algorithm in the zone
apex DNSKEY RRset”

● Cache taken into consideration
● 5 steps:

1. Add New RRSIGs
2. Add New DNSKEY
3. Change DS
4. Remove Old DNSKEY
5. Remove Old RRSIGS

Dilemma: Conservative vs Liberal
Conservative
● RFC 4035, section 2.2:
“There MUST be an RRSIG for each RRset using at
least one DNSKEY of each algorithm in the zone
apex DNSKEY RRset”

● Cache taken into consideration
● 5 steps:

1. Add New RRSIGs
2. Add New DNSKEY
3. Change DS
4. Remove Old DNSKEY
5. Remove Old RRSIGS

Liberal

● RFC 6840, section 5.11

“This requirement applies to servers, not validators.
Validators SHOULD accept any single valid path.”

● 3 steps (double-signing scheme)
1. Add New DNSKEY/RRSIGs
2. Change DS
3. Remove Old DNSKEY/RRSIGs

Dilemma: Conservative vs Liberal
Conservative
● RFC 4035, section 2.2:
“There MUST be an RRSIG for each RRset using at
least one DNSKEY of each algorithm in the zone
apex DNSKEY RRset”

● Cache taken into consideration
● 5 steps:

1. Add New RRSIGs
2. Add New DNSKEY
3. Change DS
4. Remove Old DNSKEY
5. Remove Old RRSIGS

Liberal

● RFC 6840, section 5.11

“This requirement applies to servers, not validators.
Validators SHOULD accept any single valid path.”

● 3 steps (double-signing scheme)
1. Add New DNSKEY/RRSIGs
2. Change DS
3. Remove Old DNSKEY/RRSIGs

Liberal ✓
● Much simpler process

Liberal ✓
● Much simpler process
● Only Unbound prior to 1.4.8 (Jan 2011) known to be too strict
● Tested rollover in both cases (ecdsa-l.br vs ecdsa-c.br)

○ Probes with RIPE Atlas
○ No significant change between both

Algorithm Rollover
● .br

○ RSASHA1
○ KSK 1536bit
○ ZSK 1280bit

● *.br
○ RSASHA1 and

RSASHA1NSEC3
○ CSK 1280bit
*CSK = Combined Signing Key

Algorithm Rollover
● .br

○ RSASHA1
○ KSK 1536bit
○ ZSK 1280bit

● *.br
○ RSASHA1 and

RSASHA1NSEC3
○ CSK 1280bit
*CSK = Combined Signing Key

● .br
○ ECDSA-P256-SHA256
○ KSK
○ ZSK

● *.br
○ ECDSA-P256-SHA256
○ CSK

Execution

Preliminaries
● New KSK had to be created on HSM (Hardware Security

Module)
○ HSM software update (support for ECDSA)
○ All 4 HSMs had to be synchronised
○ 2 different sites

● Reduce TTL to 3600 (1h) to speed up the process
○ CSK rollover concluded in 7 hours

CSK Rollover (*.br)
● 20/Aug/2018

○ 12:00 - New CSK added on all child zones
■ Double-signing

(Wait 5 TTLs (5h) for new key to propagate)
○ 17:00 - DS changed on .br for all child zones
○ 19:00 - Old CSK removed from all child zones

(All times in UTC)

KSK and ZSK Rollover (.br)
● 20/Aug/2018

○ 12:00 - New KSK and ZSK added on .br
■ Double-signing

○ 17:00 - Request DS change at IANA
○ 22:00 - DS changed at IANA
(Wait for new DS to propagate)

● 23/Aug/2018
○ 13:00 - Old KSK and ZSK removed from .br

(All times in UTC)

Results

Trustchain - CSK Rollover

Key added DS changed Key removed

Trustchain - CSK Rollover

Key added DS changed Key removed

Algorithm Rollover

638 bytes←

RSA

Algorithm Rollover

289 bytes (55% less)←

ECDSA

Response size

Response size - CDF (cumulative distribution function)

ECDSA: 99% < 850 bytes
RSA: 99% < 1200 bytes

42% < 512 bytes

65% < 512 bytes

TCP query %

Thank You
Cesar Kuroiwa
cesar@nic.br

