

ALGORITHM ROLLOVER ON .BR

Introduction

Introduction

- .br signed since 2007
- 128 child zones (com.br, net.br, org.br, ...)
- RSA-SHA1
- 2 KSK rollovers (2010, 2015)
 - Key size increased (1536bit)

Motivation

- Improve security
 - ECDSA (Elliptic Curve Digital Signature Algorithm)
- Reduce DNS response size
 - RRSIGs and DNSKEYS: 60% smaller
 - \circ Less network usage
 - Less TCP fallback

Motivation

- Complete renovation of DNS provisioning system
 - \circ Previous one dates back from 2004
 - C++
 - Maintainability issues
 - Deficiencies in memory management
 - $\circ~$ Moving to Go ~

Dilemma: Conservative vs Liberal

registrobr nicbr cgibr

Conservative

• RFC 4035, section 2.2:

"There MUST be an RRSIG for each RRset using at least one DNSKEY of each algorithm in the zone apex DNSKEY RRset"

- Cache taken into consideration
- 5 steps:
 - 1. Add New RRSIGs
 - 2. Add New DNSKEY
 - 3. Change DS
 - 4. Remove Old DNSKEY
 - 5. Remove Old RRSIGS

Dilemma: Conservative vs Liberal

Conservative

• RFC 4035, section 2.2:

"There MUST be an RRSIG for each RRset using at least one DNSKEY of each algorithm in the zone apex DNSKEY RRset"

- Cache taken into consideration
- 5 steps:
 - 1. Add New RRSIGs
 - 2. Add New DNSKEY
 - 3. Change DS
 - 4. Remove Old DNSKEY
 - 5. Remove Old RRSIGS

Liberal

• RFC 6840, section 5.11

"This requirement applies to servers, not validators. Validators SHOULD accept any single valid path."

- 3 steps (double-signing scheme)
 - 1. Add New DNSKEY/RRSIGs
 - 2. Change DS
 - 3. Remove Old DNSKEY/RRSIGs

Dilemma: Conservative vs Liberal

Conservative

• RFC 4035, section 2.2:

"There MUST be an RRSIG for each RRset using at least one DNSKEY of each algorithm in the zone apex DNSKEY RRset"

- Cache taken into consideration
- 5 steps:
 - 1. Add New RRSIGs
 - 2. Add New DNSKEY
 - 3. Change DS
 - 4. Remove Old DNSKEY
 - 5. Remove Old RRSIGS

Liberal

• RFC 6840, section 5.11

"This requirement applies to servers, not validators. Validators SHOULD accept any single valid path."

- 3 steps (double-signing scheme)
 - 1. Add New DNSKEY/RRSIGs
 - 2. Change DS
 - 3. Remove Old DNSKEY/RRSIGs

registrobr nicbr cgibr

• Much simpler process

Liberal 🗸

- Much simpler process
- Only Unbound prior to 1.4.8 (Jan 2011) known to be too strict

- Tested rollover in both cases (ecdsa-l.br vs ecdsa-c.br)
 - Probes with RIPE Atlas
 - $\circ~$ No significant change between both

Algorithm Rollover

registrobr nicbr cgibr

- .br
 - RSASHA1
 - KSK 1536bit
 - ZSK 1280bit
- *.br
 - RSASHA1 and RSASHA1NSEC3
 - CSK 1280bit

*CSK = Combined Signing Key

Algorithm Rollover

- .br
 - RSASHA1
 - KSK 1536bit
 - ZSK 1280bit
- *.br
 - RSASHA1 and RSASHA1NSEC3
 - CSK 1280bit
 - *CSK = Combined Signing Key

- .br
 - ECDSA-P256-SHA256
 - KSK
 - ZSK
- *.br
 - ECDSA-P256-SHA256CSK

Execution

Preliminaries

- New KSK had to be created on HSM (Hardware Security Module)
 - HSM software update (support for ECDSA)
 - All 4 HSMs had to be synchronised
 - 2 different sites
- Reduce TTL to 3600 (1h) to speed up the process
 - CSK rollover concluded in 7 hours

CSK Rollover (*.br)

registrobr nicbr cgibr

- 20/Aug/2018
 - $\circ~$ 12:00 New CSK added on all child zones
 - Double-signing

(Wait 5 TTLs (5h) for new key to propagate)

- 17:00 DS changed on .br for all child zones
- 19:00 Old CSK removed from all child zones

(All times in UTC)

KSK and ZSK Rollover (.br)

registrobr nicbr cgibr

- 20/Aug/2018
 - $\circ~$ 12:00 New KSK and ZSK added on .br
 - Double-signing
 - $\circ~$ 17:00 Request DS change at IANA
 - $\circ~$ 22:00 DS changed at IANA

(Wait for new DS to propagate)

• 23/Aug/2018

13:00 - Old KSK and ZSK removed from .br

(All times in UTC)

Results

Trustchain - CSK Rollover

Trustchain - CSK Rollover

Algorithm Rollover

;; QUESTION SECTION: ;br.

IN DNSKEY

registrobr nicbr cgibr

;; ANSWER SECTION:

br. 21600 IN DNSKEY 257 3 5 AwEAAZvox2cw9B9DxfpSDg0uSDEXhutJ xVfF79Gwb06VNBS1PaSio6qC 5UD6GyGwv1LtNFu5rnazYpS9aJNL2Sv5jl3gz7lKwZmncsXd0SWQIvP6 P7fc4U LCgRyzn0a4z678q69wYc/bYIio+dAjv/20/Cbk+syRmeRYwoNT Vyf03o6sKLrsj/b7QrLogxa8Psbg+wujFkkX0 bSM7XqKhP4dbsDDp9Pq meXL8097rxcLPV8h0bvdmclDap/r5I2w9rPbzQ==

br. 21600 IN DNSKEY 256 3 5 AwEAAdzq9z+k2ZBZhyoO3laVDL+78dG5 EMsE9PyAYOuy5wq27Y7ONJBi zPexJSF5wtPa7gWgRYjEwFJ5xPxX1adM+Z53jdum0hmW1WicZsYNQ3vJ IUpoKb l00GoPIzfuBoHJFRGhv0HtBen0vzoQ5VllX6M+HrYLZXrEDXJq IIZnf9J5O3sXwL4zYjFmXe7Wi5Ia8pGwyFGZD j0V76RnFknCheM=

br. 21600 IN RRSIG DNSKEY 5 1 21600 20180903000000 20180812 000000 802 br. gNrbp06Uf1KewXXffD7t7Umb4trmIslbRoKQst0tjxZx5TLapvU+ssaK 8A+ZasayomCh+scs DXFoHDpcyUut1WgL7fDWH6AEluJ9f1ALDplGx64X 7km6ZoSyfoKMChw0Gbhze/q+2BBoL7iyRu462zZf57TaJBI 6UdbcQfBx jZ37Y9iF22TUYoXPxExtSr1+qiVoRrnX0r9CPJxEVRzfNu8d7MxkdqJS qNvAuGSxyq7NMTv1RwdwX fAze5MADGVQ

;; MSG SIZE rcvd: $638 \leftarrow 638$ bytes

Algorithm Rollover

ANSWER SECTION: br. 21600 IN DNSKEY 256 3 13 lBbAHerLHCrYMnwHKdu0tnD00x T/Ppdzx5/iG/mi0ny2CWcf5LrtvU+y wRk+nKCSnzqczyqJ3cF0zy+L1ZISzg== 21600 IN DNSKEY 257 3 13 i9GgZ+/z2Y7VbG3AHrh7KD7FUH br. GxmCKHfoVGv/zZ3DAcXTVnAywWTopC BxqZas4JkzaPdAGd0rVtRsKGRDhiFq== DNSKEY 13 1 21600 20180909120000 20 br. 21600 IN RRSIG 180819120000 2471 br. Vesqhwm2LrGYmYoA+pSXBqnY3QVfkUVvU9ByH8segMvT/DSACQVBUwFx xTJl Z5py8UGNJtaPmY+AcHu+epWuyg== ;; MSG SIZE rcvd: 289 \leftarrow 289 bytes (55% less)

Response size

Response size - CDF (cumulative distribution function)

Thank You

Cesar Kuroiwa cesar@nic.br

